Erasmus MC zalus

Vulnerable Plaque Trials Using Surrogate Imaging Markers

Prof. Patrick W. Serruys MD, PhD Hector M. Garcia-Garcia MD, MSc Yoshinobu Onuma MD

Subject: Imaging II: Clinical Implications of Imaging and Physiology Tools Place: Symposium Arena, Level 3 5:00 PM ~ 5:12 PM

Surrogate markers Definition

- a clinical/imaging measurement
- statistically associated with a clinical outcome
- with current knowledge is believed to shar e a causal mechanism with the clinical ou tcome

http://www.fda.gov/ohrms/dockets/ac/00/backgrd/3609b1d/tsld004.htm

Surrogate markers Definition

 A laboratory or physical sign that is used i n therapeutic trials as a substitute for a cli nically meaningful endpoint that is a direc t measure of how a patient feels, function s, or survives and that is expected to pre dict the effect of the therapy

http://www.fda.gov/cder/Offices/Biostatistics/Chakravarty_376/tsld003.htm

Surrogate markers Definition

BioImage Study: A Clinical Study of Burden of Atherosclerotic Disease in an At-Risk Population

7300 pts multicenter

Mobile units

Coronary Artery Calcium (CAC) score, Carotid Intima-Media Thickness (IMT), atherosclerotic plaque, Ankle Brachial Index (ABI), and presence of Abdominal Aortic Aneurysm (AAA)

> Biomarkers, RNA expression profiling, and candidate gene analysis or genome wide scanning.

PI: Valentin Fuster, MD, PhD and Erling Falk, MD, PhD Sponsor: BG Medicine, Inc; AstraZeneca; Abbott; Merck; Philips Medical Systems; Takeda Global Research & Development Center, Inc

The **PREDICTION** Trial

Prediction of Vascular and Clinical Outcomes by Intracoronary Vascular Profiling Study

500 pts multicenter

1-vessel imaging

The study will examine abnormalities of coronary blood flow by fusing coronary angiography and intravascular ultrasound.

MSCT

Substudy

N=50-100

Angiography (QCA of entire coronary tree), IVUS, Virtual histology, Palpography

PI: Gregg W. Stone, Co-PI: Patrick W. Serruys Sponsor: Abbott Vascular; Partner: Volcano

PI: Patrick W. Serruys Sponsor: EU Grant Partner: Volcano

IEX: 67 High Prob	t Study	
	600 pts with ACS/Non-ACS	
A CHEMOGRAM	Thoracenter July 1-2 vessel imaging post PCI	Biomarkers -Hs CRP -IL-6 -sCD40L -MPO -TNF α -MMP9 -I p-PI Δ2
-Others Angiography (QCA of entire coronary tree), IVUS,		
NIR spectroscopy		

PI: Patrick W. Serruys Sponsor: InfraReDx JACC: CARDIOVASCULAR IMAGING © 2009 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 2, NO. 4, 2009 ISSN 1936-878X/09/\$36.00 DOI:10.1016/j.jcmg.2008.11.016

In Vivo Assessment of High-Risk Coronary Plaques at Bifurcations With Combined Intravascular Ultrasound and Optical Coherence Tomography

Nieves Gonzalo, MD, Hector M. Garcia-Garcia, MD, MSc, Evelyn Regar, MD, PHD, Peter Barlis, MBBS, MPH, Jolanda Wentzel, PHD, Yoshinobu Onuma, MD, Jurgen Ligthart, BsC, Patrick W. Serruys, MD, PHD

Rotterdam, the Netherlands

J Am Coll Cardiol Img 2009;2:473–82

Some people think that only Little...

JACC: CARDIOVASCULAR IMAGING © 2009 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

PUBLISHED BY ELSEVIER INC.

EDITORIAL COMMENT

The Vulnerable Plaque "Hypothesis"

Promise, but Little Progress*

Steven E. Nissen, MD Cleveland, Ohio

A PubMed search using the terms "vulnerable plaque" or "high-risk" plaque yields >2,000 references to journal articles published over the past 20 years. Indeed, few concepts in cardiovascular medicine have achieved such intense scientific interest over such a long duration. During this 20-vear period, many diagnostic techniques designed to "detect" vulnerable plaques have come and gone. In each case, a flurry of promising "findings" has been followed by a sobering reality check. These include thermography, spectroscopy, palpography, virtual histology, optical coherence tomography, and many more (1-5). A large number of startup companies with "breakthrough" approaches have come and gone, nearly all leaving investors with empty pockets, but no progress. What has gone wrong?

It is time to face reality. Much of the contemporary concept of vulnerable plaque is fundamentally flawed or overly simplistic, and most approaches to detection are poorly conceived. \mathbb{N}

Background 1: Acute Myocardial Infarctions Evolve Most Frequently From Plaques With Mild to Moderate Obstruction

Inclusion criterion: FFR>0.75

Background 2: TICFA, a theoretical precursor of plaque rupture maybe detected invasively by IVUS-VH according to the following criteria:

- 1. 3 consecutive frames with three characteristics
- 2. Necrotic core ≥10%
- 3. In direct contact with the lumen
- 4. Plaque burden >40%

Rodriguez-Granillo GA, Garcia-Garcia HM, Serruys P W. J Am Coll Cardiol 2005;46:2038-42 Garcia-Garcia HM, Serruys PW et al. Eurointervention 2006;2:338-344. Background 3: OCT enables to measure accurately fibrous cap thickness, increases accuracy of detecting TCFAs and allows to identify plaque rupture

European Heart Journal doi:10.1093/eurheartj/ehn132 **CLINICAL RESEARCH**

Cap thickness 40 microns

Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma

Takahiro Sawada¹, Junya Shite¹*, Hector M. Garcia-Garcia², Toshiro Shinke¹, Satoshi Watanabe¹, Hiromasa Otake¹, Daisuke Matsumoto¹, Yusuke Tanino¹, Daisuke Ogasawara¹, Hiroyuki Kawamori¹, Hiroki Kato¹, Naoki Miyoshi¹, Mitsuhiro Yokoyama¹, Patrick W. Serruys², and Ken-ichi Hirata¹

¹Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan; and ²Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands

PB 55.8%; NC 22%

Eur Heart J. 2008 Apr 7

Background 4: Palpography detects high-strain spot which has been proven to be TICFA associated

Background 4: Palpography detects high-strain spot which has been proven to be TICFA associated

Background 5: Disappearance of high-strain spot after scaffolding by stent, the Absorb experience and sequestration of the necrotic core by a *de novo* fibrotic cap

Pre-stenting Post-stenting 6-month 24-month

Background 5: Disappearance of high-strain spot after scaffolding by stent, the Absorb experience and sequestration of the necrotic core by a *de novo* fibrotic cap

Pre-stenting Post-stenting 6-month 24-month

SECRITT Trial I decision algorithm: Randomized trial to detect and treat high-risk plaque

What is done now:

V-Shield : Self-expanding Nitinol scaffold with thin struts (56 micron) and 6F compatible

*This product is currently under development and is not approved for sale or use.

V-Shield : Self-expanding Shield Forces

Radial Resistive Force (RRF) – Force the Shield exerts to resist the recoil of the plaque and vessel wall

(crush resistance)

Chronic Outward Force (COF) -Force the Shield exerts on the plaque and vessel wall

(dilation force)

V-Shield : RRF & COF

High crush resistance/chronic outward force ratio

V-Shield : Chronic Feasibility Histology

CV18925 107 RCA mid Shield

CV18932 114 LAD mid BMS CrCo

CV18928 110 RCA mid DES CrCo

Granada JF, Kaluza GL, Kolodgie F, Virmani R

Case 1: History and Initial Angiography

64 year old class II angina coronary risk factors:

- past smoking
- high cholesterol
- hypertension
- Flow-limiting lesion in LCx
- Non flow-limiting lesion (40% diameter stenosis) with FFR of 0.84 in the LAD

(Ramcharitar, S et al., 2008 in press)

Case 1: History and Initial Angiography

64 year old
class II angina
coronary risk factors:
past smoking
high cholesterol
hypertension

Flow-limiting lesion in LCx

Non flow-limiting lesion (40% diameter stenosis) with FFR of 0.84 in the LAD

(Ramcharitar, S et al., 2008 in press)

Case 1: Pre-randomization IVUS, IVUS-VH and OCT

Remodeling Index>1.05

OCT cap: 60 micron; no rupture

Case 2. 081692. LCX. Control

Case 1: Shield deployment 1

Case 1: Shield positioning

Case 1: Shield Unsheathing

Case 1: Shield post deployment

Case 1: Final angiogram after post dilation at 6 atm

Case 1. OCT M4 pullbacks pre and post stenting showing enlargement of luminal area with well apposed struts

Carpet view of palpography pre and post shielding

6 months follow up on the first shielded patient

QCA at 6 months follow up

MSCT – 50 micron nitinol struts make the shield evaluable non-invasively

Colocalization of MSCT and OCT within the nitinol shield stent at 6 months post-implantation, showing good stent patency and blooming artefact from distal markers as well as calcification.(Core lab Cardialysis)

Conclusions

- This is the first trial of localized therapy for vulnerable plaque/TCFA
- The first patient controlled at 6 months shows a thin de Novo neointima cap by OCT
- Stent appears evaluable by noninvasive MSCT
- There have been no adverse events so far in 5 patients shielded