5 Tips on Left Main PCI

Seung-Jung Park, MD, PhD

Professor of Medicine, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

To Treat or Not To Treat ?

Significant Stenosis, *Negative FFR, 0.80*

CardioVascular Research Foundation

Insignificant Stenosis, *Positive FFR, 0.70*

Plaque rupture MLA 6.2mm²

There Are Many Mismatches !

How Many Mismatches ? Os/Shaft, Intermediate LM Disease

Park SJ et al. JACC Interv, 2014;7(8):868-874

What Does it Mean FFR Guided ?

FFR Cut-Off Value Matched With Positive Non-invasive Stress Test (n=45)

FFR <0.75

Sensitivity Specificity Positive PV Negative PV Accuracy 88% 100% 100% 88% 93%

Pijls NHJ, NEJM 1996;334:1703-8

FFR Guided Means Ischemia Guided !

CardioVascular Research Foundation

What Does It Mean 50% Diameter Stenosis ?

Gould, K. L. 1974, Animal Study

FFR-Guided Means, Ischemia Guided !

Angio-Guided Means, No Ischemic threshold ! No Clinical Relevance !

How To Implement ?

LM Ostial and Shaft Disease

LM Bifurcation Disease

If Transducer Placed Beyond Bifurcation in both LAD and LCX,

Single Unit of Disease

FFR still Works !

FFR Guide PCI Clinical Outcome Is Good !

FFR Guided Clinical Outcomes of LM disease

Survival Rate

CardioVascular Research Foundation

Hamilos, et al. Circulation 2009;120:1505

FFR Guided Clinical Outcomes of LM disease

MACE Rate

CardioVascular Research Foundation

Hamilos, et al. Circulation 2009;120:1505

Treatment Strategy Has Been Changed after Routine Use of FFR for LM Disease

DEFER

CABG PCI

Ahn JM, Park SJ et al. Am J Cardiol 2015;116:1163-1171

Improved Clinical Outcomes for LM and 3 Vessel Disease

Death /MI /Stroke or Repeat Revascularization At 3 Years

CardioVascular Research Foundation

Ahn JM, Park SJ et al. Am J Cardiol 2015;116:1163-1171

Current Guideline of FFR

Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for CardioThoracic Surgery (EACTS); European Association for Percutaneous Cardiovascular Interventions (EAPCI), Wijns W et al. Guidelines on myocardial revascularization. Eur Heart J. 2010 Oct;31(20):2501-55. Levine GN, et al. 2011 ACCF/AHA/SCAI Guideline for PCI: Executive Summary. Circulation 2011;124:2574-2609

5 Tips on LM PCI

 To Treat or Not To Treat - FFR Guided Decision Making Is Gold Standard.

Can LM IVUS MLA Predict Functional Significance of Stenosis ?

LM, Ischemic Threshold of IVUS MLA Matched with FFR <0.75 (n=55 LM Disease)

Jasti V et al. Circulation 2004;110:2831-6

New LM, Ischemic Threshold of IVUS MLA Matched with FFR <0.80 (n=112, Os and Shaft LM Disease)

$Cut-off = 4.5 mm^2$

Sensitivity79%Specificity80%PPV83%NPV76%Accuracy80%

CardioVascular Research Foundation

Park SJ et al. JACC Interv, 2014;7(8):868-874

Park's Data (n=112) 100%, Ostial/Shaft Lesions More Positive FFR Normal Distribution mean FFR 0.78 0.9 0.8 Jasti's data (n=55) 0.7 FFR Small Number, Large Vessels 58% LM Distal, 75% FFR (-), 0.6 Not Normal Distribution Mean FFR 0.86 0.5 2 8 10 12 14 16 0 4 6 MLA (mm²) 4.5 mm² 6.0 mm²

CardioVascular Research Foundation

Medical Center

How do I Implement ?

Ostial and Shaft LM Disease

Bifurcation with Down Stream Disease

4.5~6.0 mm² **Consider FFR !**

< 4.5 mm² Positive FFR

> 6.0 mm²
Negative FFR

5 Tips on LM PCI

- To Treat or Not To Treat FFR Guided Decision Making Is Gold Standard.
- LM IVUS MLA (4.5 mm²) Can Predict Functional Significance of Stenosis !

1 Stent or 2 Stents ?

LM Bifurcation PCI

1 Stent	Normal or Diminutive LCX, (Medina 1.1.0., 1.0.0) Small LCX with < 2.5 mm in diameter, Focal disease in distal LCX
2 Stent	Diseased LCX, (Medina 1.1.1., 1.0.1) Large LCX with \geq 2.5 mm in diameter Diseased left dominant coronary system Diffuse disease in distal LCX

Park SJ, Textbook of Bifurcation Stenting 2007

1 Stent for Normal LCX

72/M, Unstable angina,

Not Much Plaque on LCX OS

LCX Ostium Minimal-disease MLA 5.4 mm²

CardioVascular Research Foundation

72/M, Unstable angina,

DES $3.5 \times 23 \text{ mm}$

Additional high pressure Inflation with 4.0 mm non-compliant balloon

CardioVascular Research Foundation

Angiographic Result Is Perfect !

No significant compromise of LCX ostium.

Post stent-IVUS

Good Stent Expansion Stent Area 6.2 mm²

CardioVascular Research Foundation

No Carina Shift MLA 4.7 mm²

Any Jailing Morphology Cannot Predict Functional Significance of Jailed LCX

Jailing LCX After Stent Cross-Over

After Stent Crossover Normal Looking LCX, Functionally Significant LCX Jailing Is Only 7%

Kang SJ, Catheterization and Cardiovascular Interventions. 2014;83(4):545-52.

Jailing LCX Defer Is Safe and Good ! Death or MI at 2 Years

Ahn JM et al, AJC 2017 15;119(4):528-534.

5 Tips on LM PCI

- To Treat or Not To Treat FFR Guided Decision Making Is Gold Standard.
- LM IVUS MLA (4.5 mm²) Can Predict Functional Significance of Stenosis !
- Stent Crossover Is Usually Enough in Case of Normal LCX. Kissing Balloon Inflation Is Not Always Good.

2 Stents for True Bifurcation

70/M, Unstable angina *True Bifurcation Lesion (Medina 1,1,1)*

Separate Pull Back IVUS True Bifurcation Disease (Medina 1,1,1), Significant Plaque in LCX OS

LAD Ostium

LCX Ostium

Why LAD and LCX Separate Pullback ?

Oblique imageinerth LLAXO PPullbackk

LCX

LM

Looks Good !

CardioVascular Research Foundation

LAD

Mini-Crushing !

Sequential High pressure inflation in Both LCX and LAD

Final kissing balloon inflation with moderate pressure.

CardioVascular Research Foundation

Final Angiography

Final IVUS, Effective Stent Area

LAD Stent CSA : 8.8 mm²

LCX Stent CSA : 5.1 mm²

2 Stent Techniques

- Mini-crush (or step crush)
- T-stent, modified T-stent or TAP
- Culotte
- V-stent
- Y-stent (SKS-simultaneous kissing stents)

Effective Stent Area (Rule of 5,6,7,8 mm²) Restenosis Rate < 5% and TLR < 2%

Kang et al. Circ Cardiovasc Interv 2011;4:1168-74

5 Tips on LM PCI

- To Treat or Not To Treat FFR Guided Decision Making Is Gold Standard.
- LM IVUS MLA (4.5 mm²) Can Predict Functional Significance of Stenosis !
- Stent Crossover Is Usually Enough in Case of Normal LCX. Kissing Balloon Inflation Is Not Always Good.
- Any 2 stents Technique Is Feasible in True LM Bifurcation Disease. Most Important Procedural Issue Is IVUS Guided Optimization (Rule of 5,6,7,8 mm²) after Sequential High Pressure and Kissing Balloon Inflation.

Can Different DES Make Any Different Clinical Outcomes ?

Preliminary Analysis 2017 IRIS-MAIN, IRIS-DES, and PRECOMBAT (n=2,692 LM PCI)

Primary End Point Target-Vessel Failure

5 Tips on LM PCI

- To Treat or Not To Treat FFR Guided Decision Making Is Gold Standard.
- LM IVUS MLA (4.5 mm²) Can Predict Functional Significance of Stenosis !
- Stent Crossover Is Usually Enough in Case of Normal LCX. Kissing Balloon Inflation Is Not Always Good.
- Any 2 stents Technique Is Feasible in True LM Bifurcation Disease. Most Important Procedural Issue Is IVUS Guided Optimization (Rule of 5,6,7,8 mm²) after Sequential High Pressure and Kissing Balloon Inflation.
 Different DES Can Not Make Any Different Clinical Outcomes. (Any DESs are Equivalent in LM PCI).

Thank You !!

summitMD.com