2D vs. 3D Angiosome for BTK

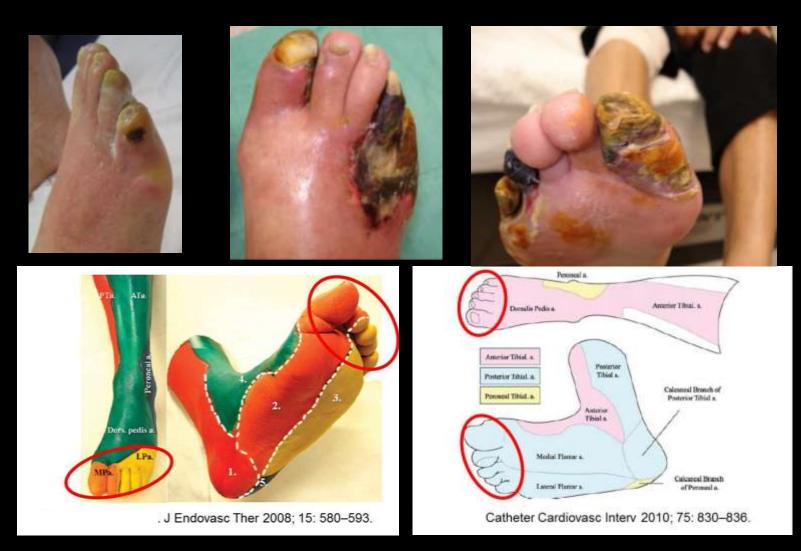
Osami Kawarada, MD, PhD Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka, Japan

No financial conflicts of interest to disclose concerning the presentation

1. One straight-line

2. As many as possible

3. Below the ankle


Angiosome What is Original Concept

Angiosome is a "<u>3-dimensional volume</u>" supplied by a source artery that <u>cannot be assessed after the occlusion of</u> <u>adjacent source artery</u>.

Taylor GI and Palmer JH. Br J Plast Surg. 1987; 40: 113-141.

Angiosome cannot be applied to the infrapopliteal disease

Confusing "2D" Angiosome Maps

A biased diagnosis of direct and indirect intervention

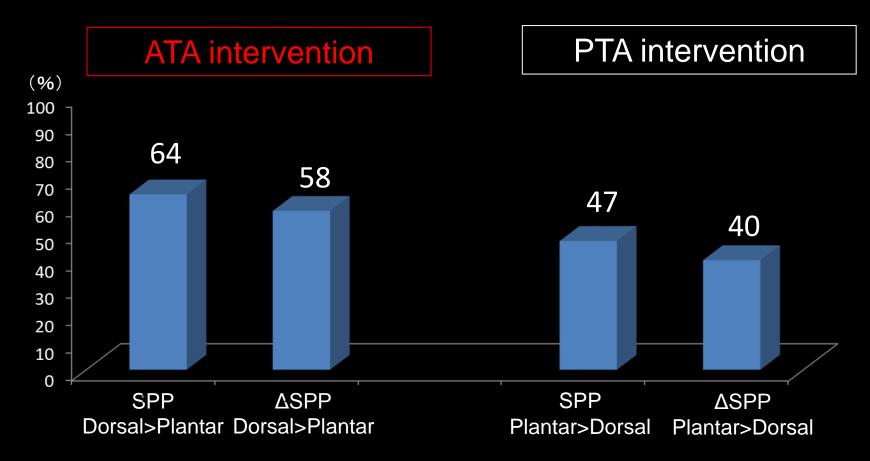
2D Angiosome Theory is Myth or Truth?

Author	Wound healing rate				Limb salvage rate			
	Direct	Indirect	P value	Months	Direct	Indirect	P value	Months
Alexandrescu et al ⁴⁷ (2011)	79.1	55.1	<0.018#	12	97.0	84.5	<0.030#	12
lida et al ⁵¹ (2012)	-	-	-	24	82	68	0.01*	24
Kawarada et al ¹⁰ (2012)	-	-	0.886	-	- 7	-	0.524	-
Soderstrom et al ⁵² 2013)	69	47	0.021"	12	86	77	0.086	12
Fossacecca et al49 (2013)	57.4	32.3	NM	12	90.4	91.2	NS	12
Varela et al ⁵⁷ (2010)	92	73	0.008#	24	93.0	72.0	0.02*	24
Kabra et al ⁶⁸ (2013)	96.4	83.3	0.21	6	84	75	0.06	6
Neville et al ⁵³ (2009)	91	62	0.03#	-	-	-	-	-
Deguchi et al ⁶⁹ (2011)	73.3	72.2	0.43	-	÷	-	-	-
Azuma et al ⁹ (2012)	95.8	91.7	0.185	24	97.8	92.3	0.855	24
Rashid et al ⁵⁵ (2013)	86	79	0.2736	-	-	-	-	-
Kret et al ⁵⁴ (2014)	78	46	0.01#	12	-	-	0.82††	12

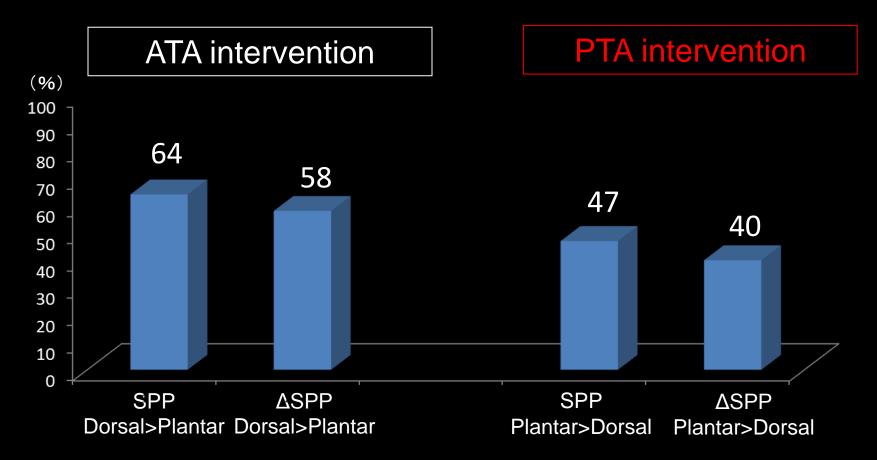
Azuma N, et al. Circ J. 2014; 78: 1791-1800.

Peripheral Vascular Disease

Effect of Single Tibial Artery Revascularization on Microcirculation in the Setting of Critical Limb Ischemia


Osami Kawarada, MD; Satoshi Yasuda, MD, PhD; Kunihiro Nishimura, MD, PhD; Shingo Sakamoto, MD; Miyuki Noguchi, RN; Yasuomi Takahi, MD, PhD; Koichiro Harada, MD, PhD; Masaharu Ishihara, MD, PhD; Hisao Ogawa, MD, PhD

- Background—Benefits of 2-dimensional (2D) angiosome-oriented infrapopliteal revascularization remain controversial. The aim of this retrospective study was to clarify the effect of single tibial artery revascularization on the dorsal and plantar microcirculation of critically ischemic limbs based on skin perfusion pressure (SPP).
- Methods and Results—Fifty-seven interventions that only involved either anterior tibial artery (ATA) or posterior tibial artery (PTA) revascularization were included in this study. SPP was measured on the dorsal side (theoretically ATA perfusion area) and the plantar side (theoretically PTA perfusion area) before and after the procedure. Dorsal and plantar SPP increased significantly, from 33 (IQR 23–40.5) to 52 (IQR 32.5–65) mm Hg (*P*<0.0001) and 31.6±16.1 to 44.8±19.2 mm Hg (*P*=0.001) after ATA revascularization, respectively, and from 29.3±14.0 to 42.4±19.7 mm Hg (*P*=0.003) and 29.3±9.8 to 43.5±15.9 mm Hg (*P*<0.001) after PTA revascularization, respectively. Both ATA and PTA revascularization were not associated with any significant differences in ΔSPP between the dorsal and the plantar regions of the foot. Only 64% and 58% of ATA revascularization cases showed higher post-SPP and ΔSPP on the dorsal side than on the plantar side, respectively. Also, only 47% and 40% of PTA revascularization cases showed higher post-SPP and ΔSPP on the plantar side than on the plantar side, respectively.
- Conclusions—Single tibial artery revascularization, whether of the ATA or PTA, yielded comparable improvements in microcirculation of the dorsal and plantar foot. Approximately half of the feet revascularized had a change in microcirculation that was not consistent with the 2D angiosome theory. (Circ Cardiovasc Interv. 2014;7:684-691.)


Key Words: angioplasty angiosome microcirculation peripheral arterial disease reperfusion

Kawarada O, et al. Circ Cardiovasc Interv. 2014; 7: 684-691.

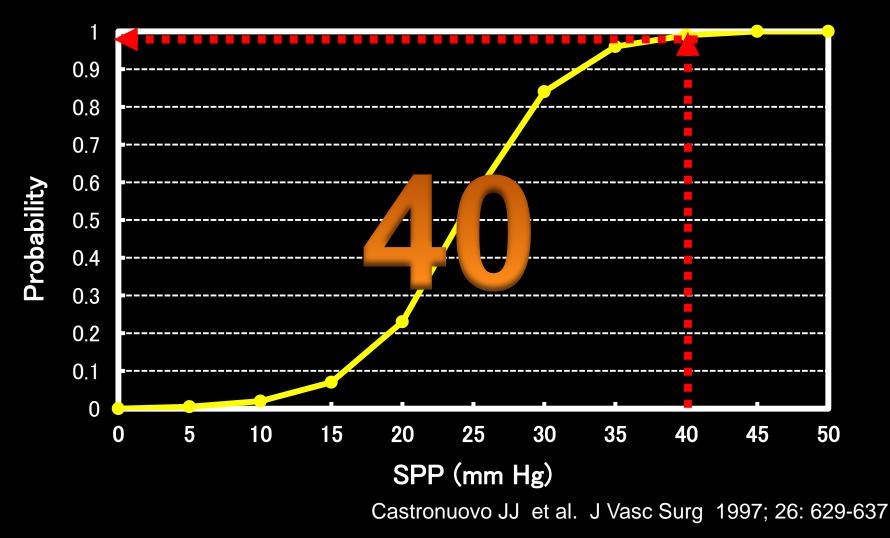
Change of SPP and ΔSPP corresponding to 2D Angiosome Theory

Change of SPP and ΔSPP corresponding to 2D Angiosome Theory

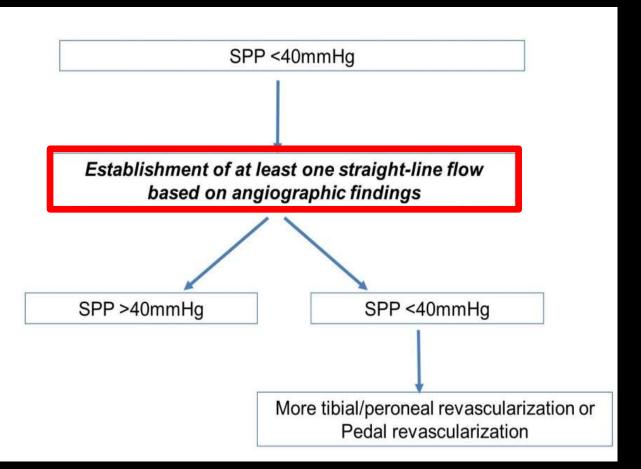
Approximately half of cases had a change in microcirculation that was not consistent with the 2D angiosome theory

Representative Case: ATA Intervention

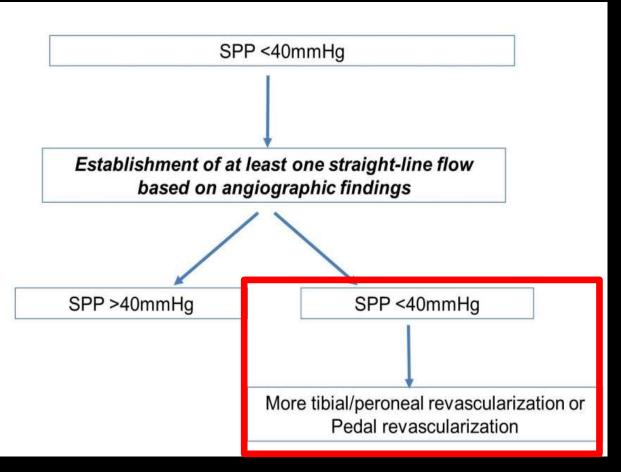
Pre


Post <u>SPP: 42/53mmHg</u>

SPP: 34/15mmHg


Dorsal Δ SPP: 8 mmHg, Plantar Δ SPP: 38 mmHg

Relationship between SPP and Wound Healing



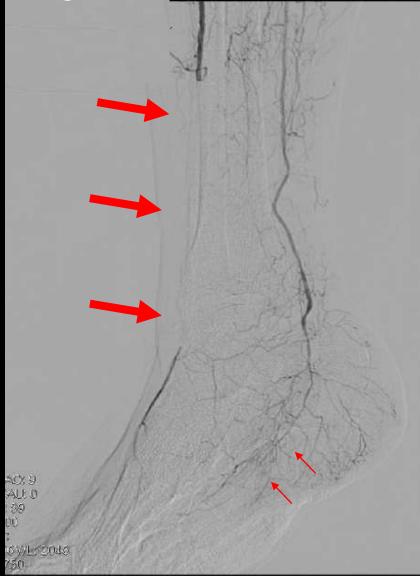
Simple Strategy for Infrapopliteal Intervention

Kawarada O, et al. Circ J. 2014; 78: 1540-1549.

Simple Strategy for Infrapopliteal Intervention

Kawarada O, et al. Circ J. 2014; 78: 1540-1549.

58 y/o Male, Rutherford 6 × 3 months Infectious wound with offensive odor


- Risk factors and comorbidity
 - HTN (+), HL (-), DM (+), Smoking (+)
 - CAD (TVD)
- Hemodialysis due to diabetic nephropathy × 5 years
- Noninvasive examination
 - ABI: Right 0.54, Left 0.68
 - SPP: 29 mmHg on the right foot
- Blood examination
 - WBC12800, CRP12.7

Diagnostic angiography

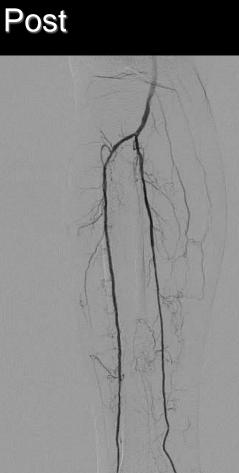
Magnified view

Debridement before revascularization to prevent sepsis (consultation to surgeon)

My target is ATA

CTO recanalization

Anterior tibial angioplasty

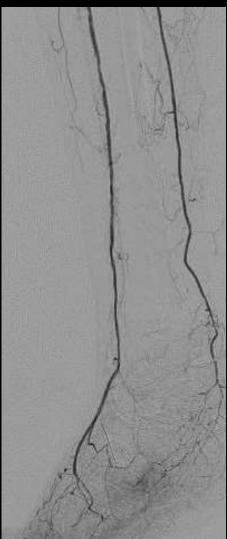

Below-the ankle angioplasty

Pre

SPP 59mmHg

SPP 29mmHg

Clinically-driven repeat intervention for restenosis


Pre

POBA

Post

"Plantar" wound completely healed after "ATA" intervention

Never mind 2D angiosome theory in the treatment of infrapopliteal disease

One straight-line and more