Complex PCI 2016

Function-guided Approach

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

How to use FFR and its concept?

- Intermediate stenosis/Multi-vessel disease
- During complex intervention: Left main/Bifurcation
- Post PCI
- Dobutamine stress FFR
- Wedge pressure
- Beyond FFR
 - Assessment for microvascular disease: CFR, IMR
 - Non-invasive hemodynamic assessment
 - Virtual stenting, virtual bypass surgery

Physiologic assessment for CAD

Intermediate stenosis: Which is a significant stenosis?

SNUH Seoul National University Hospital Cardiovascular Center

% stenosis ≠ Lumen area ≠ Ischemia

Coronary Angiography

IVUS

Physiology assessment: Beyond the intermediate stenosis

Patients with multi-vessel, multi-lesion disease

F/52 Stable angina

Distal left main disease + 3VD, 9 lesions

Patient with multi-ves

Distal left main disease + 3VD, 9 lesions?

0.65

Patient with multi-vessel, multi-lesion disease???

F/52

Stable angina, 3VD, 9 significant lesions by coronary angiography → 1VD, single lesion by FFR

SNUH Seoul National University Hospital Cardiovascular Center

How to use FFR and its concept?

- Intermediate stenosis/Multi-vessel disease
- During complex intervention: Left main/Bifurcation
- Post PCI
- Dobutamine stress FFR
- Wedge pressure
- Beyond FFR
 - Assessment for microvascular disease: CFR, IMR
 - Non-invasive hemodynamic assessment
 - Virtual stenting, virtual bypass surgery

Is there a significant LM disease?

SNUH® Seoul National University Hospital Cardiovascular Center

Angiography vs. FFR in Left Main disease

Hamilos et al. Circulation 2009

Park SJ, et al. JACC interv 2012

Safety of FFR-guided defer in Left Main Stenosis

FFR \geq 0.75 or 0.8 \rightarrow Medical treatment vs. FFR < 0.75 or 0.8 \rightarrow Revascularization

Assessment for jailed branches after LM stenting

SNUH Seoul National University Hospital Cardiovascular Center

FFR for jailed side branches

- SNUH registry, Nordic-Baltic bifurcation study and England study -

Lee JM..... Koo BK, Eurointervention 2015

Evaluation of procedure after (complex) stenting

After provisional T stenting Balloon angioplasty for ramus branch

Functionally complete revascularization

SNUH Seoul National University Hospital

FFR after DES vs. Clinical events (3years)

SNUH Seoul National University Hospital Cardiovascular Center Doh JH, ..., Koo BK, J Inv Cardiol 2015

Changes of outcome after routine use of FFR

1 Year Event Rate (%)		Adjusted Hazard Ratio	Pvalu
Left Main Disease	CABG PCI N=231 N=231	(95% CI)	, vaiu
Before Routine FFR After Routine FFR Death, MI, or stroke	15 (5.0) 25 (8.5) 7 (4.6) 15 (6.2)	1.89 (0.84-4.25) 1.02 (0.32-3.21)	0.12 0.97
Before Routine FFR After Routine FFR Any Repeat Revascularizatio	10 (3.3) 4 (1.4) 6 (4.0) 6 (2.5)	0.60 (0.14-2.54) 0.50 (0.12-2.06)	0.49 0.34
Before Routine FFR After Routine FFR	5 (1.7) 21 (7.2) 2 (1.3) 10 (4.2)	3.53 (1.14-11.0) 1.48 (0.24-8.98)	0.029 0.67
Triple Vessel Disease	N=529 N=529		
MACCE Before Routine FFR After Routine FFR	21 (4.5) 24 (6.5) 18 (5.3) 15 (4.7)	1.30 (0.63-2.65) 0.83 (0.38-1.81)	0.48 0.65
Death, MI, or stroke Before Routine FFR After Routine FFR	18 (3.9) 9 (2.5)	0.67 (0.27-1.65) 0.63 (0.27-1.48)	0.38 0.29
Any Repeat Revascularization	n		
Before Routine FFR After Routine FFR	3 (0.7) 15 (4.2) 3 (0.9) 8 (2.5)	5.12 (1.11-23.7) 1.33 (0.30-5.97)	0.036 0.71

Courtesy of SJ Park, Asan Medical Center Eur Heart J 2013

How to use FFR and its concept?

- Intermediate stenosis/Multi-vessel disease
- During complex intervention: Left main/Bifurcation
- Post PCI
- Dobutamine stress FFR
- Wedge pressure
- Beyond FFR
 - Assessment for microvascular disease: CFR, IMR
 - Non-invasive hemodynamic assessment
 - Virtual stenting, virtual bypass surgery

Anomalous RCA from Left coronary sinus

Anomativa right constary articly

Lee SE..... Koo BK, Heart 2015

Anomalous RCA from Left coronary sinus

nometaux right

Dobutamine + Atropine + Adenosine

Lee SE..... Koo BK, Heart 2015

Why angina and ischemia in this case?

- Hidden disease
- Diffuse coronary atherosclerosis
- Microvascular dysfunction

 $IMR = Pd \times Tmn = 68 \times 0.46 = 31.3$

cCTA-derived non-invasive FFR

: FFR without invasive procedure, pressure wire, adenosine

Koo BK, et al. JACC 2013

Function-guided Approach

- Invasive physiologic assessment is helpful for most of your clinical decisions in the catheterization laboratory.
- Clinical application of FFR and its extended concept will provide better stratification and management for patients with coronary artery disease.

