Update on the drug-eluting magnesium absorbable scaffold: Two-year results from the BIOSOLVE trial

Ron Waksman, MD,FACC Washington Hospital Center, Washington DC, USA

April 24, 2013

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

• Grant/Research Support

• Consulting Fees/Honoraria

Company

- Volcano
- Medtronic Vascular
- Abbott Vascular
- Boston Scientific
- Biotronik
- Medtronic
- Abbott Vascular
- Boston Scientific
- Lilly Daiichi
- Astra Zeneca

Rationale for Bioabsorbable Metallic Scaffold

- Metallic stents has a temporary mechanical role in the treatment of coronary artery disease.
- Bioabsorbable scaffolds temporarily support the vessel and additionally can release a drug similar to a permanent DES.
- After absorption no permanent scaffolding structures remain in the vessel wall allowing to resume its natural physiology.
- This may reduce the risk of late and very late thrombotic events and provide the option for reducing long-term dual antiplatelet therapy
- In addition, non-invasive imaging of the scaffolded vessel lumen with CT or MRI should become possible
- Biotronik has developed an absorbable metal scaffold (AMS) made of a magnesium alloy
- Magnesium alloy has a similar radial force to cobalt chrmium stent feels like metallic stent and bioabsorbed within 6-12 m

AMS device evolution

PROGRESS-AMS	4 mo n = 63	12 mo n = 60
Late loss (mm)	1.08 ± 0.49	-
Cardiac death	0	0
MI	0	0
Scaffold thrombosis	0	0
TLR (clinically driven)	23.8%	26.7%

Source: R Erbel, et al. The Lancet. 2 June 2007: 369 (9576): 1869-1875.

Bare Absorbable Magnesium Scaffold (AMS)

- WE43 magnesium alloy
- Strut thickness of 165 µm
- 4-crown design
- Uncoated, no drug
- Used in PROGRESS-AMS study

Learnings from bare AMS

- Device was safe/feasible
- Effectiveness required optimization
- IVUS findings showed lumen loss was due to loss of scaffolding area and NIH
- No additional safety concerns between 12 months and 7 years

* Erbel R. et al., Lancet 2007;369:1869-75, Waksman et.al, JACC Cardiovasc Interv 2009;2:312-320

DREAMS device evolution

DRug-Eluting AMS (DREAMS)

- Refined alloy with slower absorption rate
- Reduced strut thickness
- 6-crown design
- PLGA polymer carrier
- Paclitaxel drug elution
- Used in BIOSOLVE-I study

BIOSOLVE-I study design

DESIGN:

Prospective, multi-center, FIM, single *de novo* coronary artery lesions between 3.0-3.5 mm and \leq 12 mm long

PRIMARY ENDPOINT:

Cohort 1: TLF at 6 months Cohort 2: TLF at 12 months

PRINCIPAL INVESTIGATOR:

J. Koolen, MD, Catharina Ziekenhuis, Eindhoven, Netherlands

¹ A total of 5 pts withdrew consent for imaging FUP (2 at 6month and 4 at 12-month FUP)

² 1 pt died a non-cardiac death (Cohort 1), 2 pts withdrew consent (1 Cohort 1 and 1 Cohort 2)

Source: M Haude, et al. Lancet 2013; 381:836-44.

Device success		100% (47 / 47)		
Procedure success		100% (46 / 46)		
Clinical results	6-month 12-months 24-months			
	Cohort 1 & 2	Cohort 1 & 2	Cohort 1	
TLF	4.3% (2/46)	7.0% (3/43)	10.0% (2/20)	
Cardiac death	0.0%	0.0%	0.0%	
MI^1	0.0%	2.3% (1/43)	0.0%	
Scaffold thrombosis	0.0%	0.0%	0.0%	
TLR (clinically driven) ²	4.3% (2/46)	4.7% (2/43)	10.0% (2/20)	

Device Success: successful delivery of the scaffold to the target lesion, appropriate deployment, successful removal of delivery system.

Procedure Success: device success plus attainment of a final residual stenosis of <50% of the target lesion, absence of MACE during the hospital stay up to 7 days.

¹ Target vessel peri-procedural MI (DREAMS was implanted in the OM, MI occurred in the LCx)

² TLR occurred during 6M FUP, both pts had angina, 1 pt received an additional DREAMS in the target lesion during the initial procedure because of a flow-limiting bailout situation

Source: M Haude, et al. Lancet 2013; 381:836-44.

BIOSOLVE-I study results 6-and 12-month late lumen loss (LLL)

BIOSOLVE-I study results

Change in vasomotion between 6- and 12-month (N=13) In-Scaffold

10 Nitroglycerine (NTG): Presents the % change in mean lumen diameter between post-ACH and Nitro

BIOSOLVE-I study results

Vessel angulation

	Pre-Procedure N=47	Post-Procedure N=47	6-Month FUP N=36	12-Month FUP N=34
Lesion Angulation (°)	31.38 ± 21.23	14.89 ± 12.00	26.11 ± 15.91	30.88 ± 18.81
		Post vs. 6-Mo.	Post vs. 12-Mo.	6-Mo.vs. 12-Mo.
P-value		<0.0001	<0.0001	0.020

Source: M Haude, et al. Lancet 2013; 381:836-44.

BIOSOLVE-I study results *IVUS results up to 12-month (N=21)*

Source: M Haude, et al. Lancet 2013; 381:836-44.

BIOSOLVE-I study results *IVUS VH Analysis up to 12-month*

13 Source: M Haude, et al. Lancet 2013; 381:836-44.

2013_0424_DREAMS_TCT AP_RW

GER-443-015 IVUS-VH Results

DC (%)	41.76	24.46	29.86	29.97
NC (%)	36.23	38.44	37.69	38.63
FF (%)	0.82	3.26	2.55	2.41
FI (%)	21.19	33.83	29.90	28.98

2013_0424_DREAMS_TCT AP_RW

GER-443-015 IVUS Echogenicity

Quantitative Analysis % Hyperechogenicity

31%

BIOSOLVE-I study results Serial assessment of OCT results

	Post- procedure N=7	6-month N=7	12-month N=7	p-value post vs. 6-month	p-value 6 vs.12- month
Discernible struts	5791	4962	3540	0.1179	0.0050
Mean lumen area (mm ²)	7.90±1.24	5.70±0.99	5.34±1.14	<0.0001	0.040
Mean scaffold area (mm ²)	7.94±1.29	6.79 ± 1.51	6.49±1.52	0.0058	0.2149
Neo-intima area (mm ²)	0.00 ± 0.00	1.55 ± 0.51	1.58 ± 0.34	0.0002	0.7943
Neo-intima area (%)	0.00 ± 0.00	23.91±8.22	25.51 ± 5.40	0.0003	0.2800
Minimal Thickness (mm)	N/A	0.09 ± 0.04	0.10 ± 0.04	N/A	0.1280
Maximal Thickness (mm)	N/A	0.32 ± 0.05	0.30 ± 0.04	N/A	0.1992

BIOSOLVE-I study results *OCT assessment of strut apposition*

BIOSOLVE-I study results *OCT assessment of strut coverage*

18

Case Presentation GER443-001

Case Presentation GER-443-001 Greyscale and VH IVUS based on mean lumen area

Case Presentation GER-443-001 *Echogenicity*

Hyperechogenic area [mm²]

Green = Hyperechogenic tissue components including scaffold struts Red = Hypoechogenic tissue components

2013_0424_DREAMS_TCT AP_RW

<u>6 MONTHS</u> In-Scaffold lumen area Cross Section: 4.02 mm² Mean: 4.26 mm² Minimal: 1.91 mm²

<u>12 MONTHS</u> In-Scaffold lumen area Cross Section: 4.30 mm² Mean: 4.10 mm² Minimal: 2.17 mm²

<u>18 MONTHS</u> In-Scaffold lumen area Cross Section: 3.36 mm² Mean: 3.21 mm² Minimal: 2.01 mm²

24 MONTHS In-Scaffold lumen area Cross Section: 3.62 mm² Mean: 3.06 mm² Minimal: 2.04 mm²

Conclusions

- DREAMS demonstrates an excellent safety profile up to 24 months
- TLF rate remains stable up to 24-month follow-up
- DREAMS demonstrated significantly improved efficacy at 12 months compared to the bare AMS:
 - Reduction in LLL of 61% compared to the 4-month data of the bare AMS (1.08mm vs. 0.52mm)
 - Reduction of TLR rate by 82% (26.7% vs. 4.7%)
- BIOSOLVE-I confirms that vascular restoration is achieved with the return of vasomotion and vessel angulation at 6-month follow-up with no further reduction in dense calcium between 6 to 12 months

DREAMS program outlook

- New scaffold design will increase post-dilatation capabilities
- Markers will be added to the device to increase radiopacity
- Preclinical studies are underway with a Limus drug
- BIOSOLVE-II planning is underway and will commence later this year, pending preclinical results of DREAMS 2nd generation

DREAMS 2nd Generation Design Overview

Scaffold Backbone

- Bioabsorbable
 Magnesium alloy
- 150µm strut thickness

Base coating

- Bioabsorbable polymer
- Control of degradation

Drug coating

- Bioabsorbable
 polylactic acid
 polymer
- Sirolimus, 1.4µg/mm²

Delivery system Radiopaque markers

– Tantalum compound

- 6F compatible

- RX catheter

Coating integrity of DREAMS

SEM images of expanded 3.0 mm DREAMS (expansion diameter 3.5 mm)

SEM images of expanded 3.0 mm DREAMS (expansion diameter 4.25 mm)

Post-dilatation capability of DREAMS scaffold

27