

Pathological Features of Peripheral Atherosclerosis: Implication for Device Development

G Nakazawa Tokai Univ. Kanagawa, Japan

Sites of Atherosclerosis In order of Frequency

Gender- Age- and Atherosclerosis 🕰

Atherosclerosis in the large arteries was semi-quantitatively scored on a scale of 0–8 according to the ratio of the atheroma-occupied area to the entire surface area: negligible (0 point, ratio = 0–1/20), minimal (2 points, 1/20-1/6), mild (4 points, 1/6-1/3), moderate (6 points, 1/3-2/3), and severe (8 points, 2/3-1) where as for coronary arteries it was based on stenosis.

Histological examples Coronary vs. Femoral

A, B, C, and D are Coronary plaques and <u>E and F are</u> Femoral arteries

Percentage distribution of AHA lesion types in the different arteries stratified by age decade

Dalager, S. et al. Stroke 2007;38:2698-2705

Eccentric Fibrous plaque

Femoral

Carotid

Coronary

Early phase of atherosclerosis in different types of artery: Pathologic Intimal Thickening

Femoral Carotid

Coronary

Eccentric Fibrous Plaque with Calcified Necrotic Core

Femoral

Carotid

Coronary

Eccentric Plaque with Large lipid Core and Thin Cap Fibroatheroma in 3 different beds

Chronic Total Occlusion

Carotid

Plaque Rupture

Coronary

Plaque Erosion

Coronary

Eruptive and Non-Eruptive Nodular Calcification **Carotid Femoral** Coronary

Calcification in Lower Extremity Artery

Mönckeberg's Medial Calcification from Asymptomatic PVD Patients

Monckeberg's Medial Calcification from Symptomatic PVD Patients Requiring Ampuatation

Differences and Similarities Between Coronary and Peripheral Atherosclerosis

- The stages of atherosclerosis described in the coronary, carotid and aortic disease are also applicable in the peripheral arteries
- Peripheral arteries have a high frequency of Mönckeberg's medial calcification, a feature not present in coronary or carotid artery disease
- ➤ Lipid cores in femoral arteries are not as large as those in the coronary or carotid disease

Limitations of Current Technology for the treatment of PAD

Restenosis Rates after Percutaneous Interventions

Artery	Restenosis at 6 -12 months		
Coronary			
BMS	18 - 30 %		
DES	0 -10 %		
Carotid	5 - 8 % (BMS)		
Iliac			
Balloon angioplasty	6 - 41 %		
BMS	3 - 32 %		
SFA, Poplitial			
BMS	8 - 44 %		
DES	0 - 10 % (23% at 2 years)		
Below the knee			
BMS	21 - 79 %		
DES	4 - 37 (SES), 77 (PES) %		

Modified from Deiter RS, and Laird JR. Endovascular Today 2004

45 yrs WF with Left common iliac artery stent placement 2.5 yrs before death

Lower Extremity Artery Stenting

Procedure

- ✓ Long lesion (require overlapping stent)
- ✓ Under-expansion or incomplete apposition due to calcification

Results

- ✓ Enhanced delayed healing
- ✓ High incidence of restenosis or re-occlusion

Biomechanical forces in the femoropopliteal stenting

Hip flexion/Knee bending (degree) 0/0 70/20 90/90

- No elongation
- Torsion was not critically evaluated not observed
- Shortening and bending major changes

	Mid- SFA	Distal SFA	Popliteal	Popliteal Bending Radius/Angle
70/20 (Shortening)	5%	14%	9%	
90/90 (Shortening)	10%	23%	14%	13 mm 63°

Average values based on seven cadaver, 14 limb study

Stent fracture and Restenosis in SFA and popliteal arteries

Scheinert, D et al, JACC 2005

Iida, O et al, AJC 2006

DES Restenosis Associated with Stent Fracture

51 year old male, complained of shortness of breath then became unresponsive.

EES implanted in LOM, 6 months

New Strategies for the Treatment of Atherosclerosis

Drug Eluting Balloon

- has no metal struts that may cause continuous stimulation to the vessel and lead to sustained inflammation.
- has potential ability to evenly deliver the drug to the vessel wall.
 However, the best pharmacokinetics and the best formulation of DEB remain unknown.
- acute or subacute recoil may occur and dampen its efficacy especially in highly calcified arteries.

Self-expanding DES

- causes less injury and less inflammation on the vessel at the time of deployment.
- is flexible, and has a lasting resistance to the fracture that is associated with stent failure.
- maintains the radial force and prevents the occurrence of recoil in longterm.
- However, the advantage above will be dampened in the presence of heavy calcification as frequently observed in peripheral arteries.

Drug deliver of DEB

PTX + Iopromide (SeQuent) §

Non-atherosclerotic Rabbit Iliac Model – 28 days
PTX only
PTX+lopromi

POBA

Vascular Response to DEB

At 28-days following treatment in Rabbit Iliac model

Dose-dependent Changes in Iliofemoral Arteries Following SeQuent DEB treatment at 14 days

Downstream vascular change following DEB treatment

At 7-days

Vascular Changes in the Coronary Band of the Hoof REPEAT TREATMENT

Fibrinoid Necrosis

Platelet emboli

Fibrin Thrombus with Crystalline material

Stable Neointima formation in Access BA9 (Devax) and late catch up of Neointimal Formation in Cypher stents

Percent Stenosis and Injury in Axxess BA9 Self-Expanding Stent v. Cypher

Axxess BA9 Cypher

0.039 ± 0.029	0.60±0.68	0.080±0.097	0.31 ± 0.43
0.44±0.35	1.53±0.94	1.68±1.10	1.59±0.84
p= 0.007	p= 0.003	p= 0.005	p= 0.006
30 days	90 days	180 days	365 days

Speculative Differences Between DEB and Self-expanding DES vs. balloon expandable DES

	Balloon expandable DES	Drug-eluting Balloon	Self-expanding DES
Injury & acute inflammation at PCI	3 to 4+	3 to 4+	1 to 2+ (w/o post dilatation)
Drug deliverability	3 to 4+	1 to 3+ (depend on solvent)	3 to 4+ (even distribution)
Resistance to Recoil	3 to 4+	0	>5+
Reaction to polymer	2 to 3+	0	2 to 3+
Metal struts stimuli	2 to 3+	0	3 to 4+
Neointimal Growth	1 to 2+	2 to 3+ (incomplete drug distribution)	1 to 2+
Late luminal narrowing (restenosis)	2 to 3+ (fracture / late catch-up	3 to 4+ (acute - late recoil and late catch-up)	1 to 2+ (continuous expansion)
Uncovered strut	2 to 3+	0	1 to 2+ (w/o post dilation)
Endothelial recovery	Delayed (> 1 year)	Faster (6 to 9 months)	Delayed (> 1year)
Risk of Late thrombosis	2 to 3+	0 to 1+	1 to 2+ (larger luminal area)

Summary

- New technologies such as drug-eluting balloon (DEB) and self-expanding DES has potential advantages that will complement the limitation of current DES technology.
- However, the improvement of DEB is still required to achieve better drug distribution and to prevent distal emboli.
- The sustained radial force of self-expanding DES overcomes the "late-catch-up" phenomenon of balloon expandable DES, however, the superiority will be diminished in the presence of heavy calcification.
- The innovation of biomaterial is further needed.

Acknowledgements

CVPath Institute, Inc.

Renu Virmani

Frank Kolodgie

Masataka Nakano

Fumiyuki Otsuka