How To Use Virtual Histology in Clinical Practice by Understanding Plaque Composition

Gary S. Mintz, MD Cardiovascular Research Foundation New York, NY

• PCI Culprit of the culprit Acute results Complications • Vulnerable plaque Limitations

- 72 year old female with diabetes and hypertension presented with 3 hours of chest and transient complete heart block
- Medication during transfer to hospital (40km) included aspirin 300mg, clopidogrel 600mg, heparin 400IU, abciximab (bolus).
- Chest pain resolved at the time of admission
- ECG showed ST elevation in II, III, and aVF and ST depression in I, aVL, and V2-V3

D. Dudek & J. Legutko @ TCT 2009

culprit of the culprit proximal to MLA

MLA

Possible Stent Positioning in Culprit Lesion PCI

NC, the "culprit of the culprit"

How often do we miss the "culprit of the culprit"? And what is the impact on

- Distal embolization
- Stent thrombosis
- Restenosis
- Plaque progression

Predictors of DES Thrombosis & Restenosis

	DES Thrombosis	DES Restenosis
Underexpansion	•Fujii et al. J Am Coll Cardiol 2005;45:995-8)	•Sonoda et al. J Am Coll Cardiol 2004;43:1959-63
	•Okabe et al., Am J Cardiol. 2007;100:615-20	•Hong et al. Eur Heart J 2006;27:1305-10
	•Liu et al. JACC Cardiovasc Interv. 2009;2:428-34	•Doi et al JACC Cardiovasc Interv. 2009;2:1269-75
	 Choi et al. Circulation Cardiovascular Interventions (in press) 	•Fujii et al. Circulation 2004;109:1085-1088
Edge problems	•Fujii et al. J Am Coll Cardiol 2005;45:995-8)	•Sakurai et al. Am J Cardiol 2005;96:1251-3
secondary lesions, large	•Okabe et al., Am J Cardiol. 2007;100:615-20	•Liu et al.Am J Cardiol 2009;103:501-6
plaque burden, etc)	•Liu et al. JACC Cardiovasc Interv. 2009;2:428-34	•Costa et al, Am J Cardiol, 2008;101:1704-11
	 Choi et al. Circulation Cardiovascular Interventions (in press) 	

VH-TCFAs were associated with a smaller MSA than non-VH-TCFAs: 5.8±1.8mm² vs 6.3mm²

High Risk Plaque

Attenuated Plaque

Attenuated plaques were observed in 39.6% of STEMI, 17.6% of NSTEMI, and 0% of stable angina.

• Attenuate plaques were associated with more fibroatheromas and a larger necrotic core (on VH-IVUS).

 In ACS patients with attenuated plaques (1) the level of CRP was higher, (2) angiographic thrombus and initial coronary flow <TIMI 2 were more common, and (3) no-reflow or flow deterioration post-PCI were more common.

(Lee et al. JACC Cardiovasc Interv. 2009;2:65-72) (Wu et al, Am J Cardiol 2010;105:48-53)

Attenuated Plaque & Necrotic Core

CARDIOVASCULAR RESEARCH FOUNDATION

Courtesy Dr. Simon Dixon Beaumont Hospital, Royal Oak, MI

30

20

10

50

60

40

Goldstein et al, JACC Cardiovasc Imaging. 2009;2:1420-4

90

80

70

Columbia University Medical Center

Goldstein et al, JACC Cardiovasc Imaging. 2009;2:1420-4

Numerous studies have shown a relationship between VH-IVUS plague composition and post-PCI distal embolization

vs Nectoric Core

- Kawaguchi et al. J Am Coll Cardiol. 2007;50:1641-6 •
 - ST re-elevation in 71 pts with STEMI
- Kawamoto et al. J Am Coll Cardiol. 2007;50:1635-40 •
 - Doppler FloWire high intensity transit signals in 44 pts undergoing elective stenting resulting in poor recovery of CVFR
- Park et al. VH Summit 2007 (unpublished)
 - Largest NC independent predictor of CK-MB release (n=332)
- Hong et al. J Am Coll Cardiol Img, 2009;2:458-468 •
 - Troponin post elective stenting in 80 pts (29 stable and 51 unstable angina)
- Bose et al. Basic Res Cardiol 2008;103:587-97 •
 - CK and Tnl in 55 pts undergoing direct stenting. Patients in the 4th guartile of NC volume had a particularly high increase in biomarkers.
- Higashikuni et al. Circ J 2008; 72: 1235-41 •
 - No reflow in 49 pts with ACS undergoing PCI
- Hong et al. Eur Heart J, in press
 - No reflow in 190 pts with ACS undergoing stenting

vs Fibrotic or Fibrofatty Plaque

- Bae et al. Heart. 2008;94:1559-64. •
 - Multivariate analysis revealed that fibrofatty volume over the entire lesion length was the only independent predictor for slow flow during primary PCI in 57 pts with STEMI
- Nakamura et al. J Interv Cardiol. 2007;20:335-9 •
 - "Marble"-like image, mainly consisting of fibrofatty and fibrous plaque was associated with angiographic no-reflow in 50 STEMI pts undergoing primary PCI

Pathological Atherosclerosis Classification

Terms for Atherosclerotic Lesions in Histological Classification			Other Terms for the Same Lesions Often Based on Appearance to the Unaided Eye			
Type I lesion	Initial lesion))		
Type II lesion		ļ	Fatty dot or streak	ļ	Farly Jesion	
lla	Progression-prone type II lesion	ĺ	Tally up of Subar	ſ		
llb	Progression-resistant type II lesion	J		J		
Type III lesion	Intermediate lesion (preatheroma)					
Type IV lesion	Atheroma	}	Atheromatous plaque, fibrolipid plaque,)		
Va	Fibroatheroma (type V lesion)	J	fibrousplaque, plaque			
Vb	Calcific lesion (type VII lesion)		Calcified plaque	}	Advanced lesions, raised lesions	
Vc	Fibrotic lesion (type VIII)		Fibrous plaque			
Type VI lesion	Lesion with surface defect and/or		Complicated lesion, complicated plaque	J		
	hematoma/hemorrhage and/or thrombotic deposit					

Virmani R et al. ATVB 2000;20:1262-75.

<u>30°</u> NC abutting the lumen in <u>3 consecutive</u> frames (=1.5mm in length)

Because of the resolution of IVUS, diagnosis of a thin fibrous cap is inferred by the contact of necrotic core with the lumen – regardless of the technology

Thin Cap

- Pathologic thin fibrous cap typical of TCFA is $<65 \mu$
- However, all fibrous caps <200 μ will abut the lumen on VH-IVUS analysis

PROSPECT: Imaging Summary

Virtual histology	
(N=2811 lesions in 611 pts)	ł
- Mean plaque composition-	F
■ Dense calcium	ł
Fibrofatty Necrotic core	F
13.0% 6.5%	•
21.1%	

Plaque subtype	N=2811
Fibrotic	2.5%
Fibrocalcific	1.2%
PIT	35.9%
Fibroatheroma	57.4%
- Thick cap	36.2%
- VH-TCFA	18.9%
- Single, - Ca	5.2%
- Single, + Ca	0.5%
- Multiple, - Ca	9.5%
- Multiple, + Ca	6.1%

Independent predictors of patient level events by Cox Proportional Hazards regression

<u>Variable</u> <u>HR [95% CI]</u> <u>P value</u>

 Insulin dependent

 diabetes
 3.32 [1.43, 7.72]
 0.005

Prior PCI2.03 [1.15, 3.59]0.02

Variables entered into the model: age, gender, hypertension, insulin dependent diabetes, prior PCI, CRP at baseline, family history

Independent predictors of lesion level events by Cox Proportional Hazards regression Variable HR [95% CI] P value 5.03 [2.51, 10.11] $\mathsf{PB}_{\mathsf{MLA}} \ge 70\%$ < 0.0001 VH-TCFA 3.35 [1.77, 6.36] 0.0002 $MLA \leq 4.0 \text{ mm}^2$ 3.21 [1.61, 6.42] 0.001

Variables entered into the model: minimal luminal area (MLA) ≤4.0 mm²; plaque burden at the MLA (PB_{MLA}) ≥70%; external elastic membrane at the MLA (EEM_{MLA}) <median (14.1 mm²); lesion length ≥median (11.2 mm); distance from ostium to MLA ≥median (30.4 mm); remodeling index ≥median (0.94); VH-TCFA.

CARDIOVASCULAR RESEARCH

PROSPECT 27731-003: 58 yo 3

3/15/05: NSTEMI, PCI of MRCA 3/23/06 (1 year): Unstable angina attributed to LAD

Index 3/15/05

Event 3/23/06

QCA MLAD DS 31.1%

QCA MLAD DS 100%

PROSPECT 27731-003: Index 3/15/05

PROSPECT: Imaging Summary Per patient incidence of VH-TCFAs

CARDIOVASCULAR RESEARCH FOUNDATION

Columbia University Medical Center

Non Fibroatheromas and Non Culprit Lesion Events

Limitations – I: Thrombus

- Thrombus was detected in 81 of 259 histology slices. Thrombus was colored as fibrous or fibrofatty by VH-IVUS.
 - Nasu et al Am J Cardiol 2008;101:1079-83
- As a result. . .
 - Superficial thrombus will cause a TCFA to be classified as a ThFCA
 - A thrombus-containing lesion may be classified as PIT or fibrotic (stable) rather than unstable
- In all probability RF-IVUS detection of thrombus will not be possible by any technique since the IVUS signal changes with the "age" of the thrombus

Red Thrombus

Sensitivity = 95% Specificity = 88% Positive predictive value = 86% Negative predictive value =95%

White Thrombus

- There were no significant differences in the peak intensity of the OCT signal between red and white thrombi.
- The OCT signal attenuation of red thrombus was significantly more rapid than that of white thrombus.

(Kubo et al. Circulation 2006;114:II-645)

Limitations – II: Plaque behind Calcium

- 80% of regions of interest behind calcium contained a distinct low-amplitude signal that had a coherent periodic pattern on adjacent scan lines and a signal increase in the region of the adventitia indicating that this signal contained reflected ultrasound information as well as noise
- 20% of the regions of interest behind calcium had only noise
- Nevertheless, the signal level observed behind calcium is often very close to the noise level. Spectral assessment at such low signal-to-noise ratio might be unreliable, and VH data should be masked when a strong signal is followed by a very low intensity one or the algorithm should report a lower confidence (ala iMAP).

Tanaka et al. J Am Coll Cardiol 2007;49:29B

VH-IVUS and Plague Behind Calcium

- Using the 20MHz transducer, 80% of regions of interest ightarrowbehind calcium contained reflected ultrasound information as well as noise although the signal-to-noise ratio was low. 20% of the regions of interest behind calcium had only noise (Tanaka et al. J Am Coll Cardiol 2007;49:29B)
- When inaccurate, tissue is classified as NC 65% of the time, FT 18% of the time, and FF 14% of the time (Vince. Volcano Corp)

		Correct	Incorrect	ROIs	Accuracy
Mild microcalcium	IVG	2	0	2	100%
	S5	1	1	2	50%
Heavy microcalcium	IVG	3	6	9	33.3%
	S5	18	9	27	66.7%
Dense calcium	IVG	27	10	37	73%
	S5	27	16	43	62.8%
Overall	IVG	32	16	48	66.7%
	S5	46	26	72	63.9%

Overall Accuracy: 65.0 %

Tanaka et al. J Am Coll Cardiol 2007;49:29B

Correlation between VH-%NC and LCBI-NIRS

All Plaques

Non-calcified plaque

Limitations – III: Others

- All tissue between lumen and vessel borders must be classified as one of the four tissue types and VH analysis depends on accurate borders.
- Stent metal appears as calcium surrounded by necrotic core even when implanted acutely (Kim et al. Am J Cardiol 2008;102:1182-6). Should not be interpreted as inflammation.
- No validation for intimal hyperplasia

Border Definition

All tissue between lumen and vessel borders must be classified as one of the pre-defined tissue types

In-stent Neointimal VH-IVUS Composition at Maximal %IH Sites

Kang et al. Am J Cardiol, in press

Columbia University Medical Center VH Composition of Neointima at Various Follow-Up Times in 117 ISR Lesions Combining BMS and DES

>36Mo (n=2	26)	52.2*	<mark>5.6</mark> *	27.2*	15.0*
24-36Mo (n=	- :15)	54.9*	7.1	<mark># 25.8</mark>	* 12.2*
12-24Mo (n=	- :12)	62.5		8.1 2	<mark>2.3</mark> 7.3 [#]
6-12Mo (n=	- 42)	64.5		12.5	<mark>18.5</mark> 4.5
<6Mo (n=2	- 22)	67.2		15.4	14.62 .8
() 2	20 40	60	80	100 (%

Kang et al. Am J Cardiol, in press

Kang et al. Am J Cardiol, in press

