Top 7 Reasons pre-procedural MDCT is essential for TAVR

Jonathon Leipsic MD FRCPC FSCCT

Vice Chairman of Radiology
Associate Professor Radiology and Cardiology
University of British Columbia
Canada Research Chair -Advanced Cardiac Imaging
President Elect Society of Cardiovascular CT

Disclosures

Speaker's bureau: GE Healthcare and Edwards LifeSciences

Grant Support- CIHR, NIH, GE Healthcare, Heartflow
Advisory Board- GE Healthcare, Edwards LifeSciences, Vital Images, Neovasc, Circle CVI

Core Lab- NIH, Edwards Lifesciences, Neovasc, Tendyne

1- Vascular Injury

Major Vascular Complications and Mortality

\author{

- Major Vascular Complications
 No Major Vascular Complications
}

Aortoiliofemoral Complications

	SFAR		
Variables	≥ 1.05 ($\mathrm{n}=55$)	<1.05 ($\mathrm{n}=72$)	P Value
Any vascular complication	41.8\%	16.7\%	<0.001
VARC Major	30.9\%	6.9\%	0.001
VARC Minor	10.9\%	9.7\%	0.827
Femoral artery complication	27.3\%	12.5\%	0.035
Iliac artery complication	20.0\%	2.8\%	0.002
In-hospital mortality	20.0\%	6.9\%	0.033
30-daymortality	18.2\%	4.2\%	0.016
	Occlusion balloon catheter		

Hayashida et al. JACC Interventions 2011

Contemporary Re-appraisal of SFAR

Contrast-CT cohort

Contrast CT $(P<0.001)$			
	SRC	No SRC	Total
SIFAR ≥ 1.12	$33(27.7 \%)$	$86(72.3 \%)$	119
SIFAR <1.12	$2(1.2 \%)$	$162(98.8 \%)$	164

Source: Okuyama et al Circ Imaging 2014

2- Pre-procedural co-planar

 angle prediction
Fluoroscopic co-planar angle prediction

Line of perpendicularity

Identificatio		
n	Adjusting to LAO 0°	Adjusting to CAU 0°
LAO 30°		

of annulus

MDCT vs 3-D Angio CT for Angle Prediction

Source: Binder et al. TCT 2011, Circ Interventions April 2012

3- Ancillary root measurements essential for planning

CT Provides Additional Important Data Regarding the Aortic Root - Coronary Ostial Height

IFU - Minimum 10/11 mm
Limitations : Measurements not standardized, „bulky calcifications"

Ancillary root measurements \& Coronary height

Coronary artery occlusion

- displacement of the calcified native cusp over the coronary ostia
- < 1% of cases
- 0.66\% (Ribiero et al, JACC 2013)
- More common in
- Women
- Balloon-expandable TAVI
- Valve-in-Valve

Anatomical Predictors of Coronary occlusion

Mabrtotimity
Predictive Factors, Management, and
Clinical Outcomes of Coronary Obstruction
Following Transcatheter Aortic Valve Implantation
Insights From a Large Multicenter Registry

 Tamn Chalowary, MD,t Hawn Jiaihami, MD, Jean-Miched Paralis, MD, §
Fabio S. de Hriso, 失, MD,- Sergio J. Cinvian, MD, +1 Aim N. Cheema, MD, t1

Gonnalo Prala, MD,"- Mare Rocl, MD, it Jonge Salpendo-Femindex, MD,tt

Ahan Zajarias, MD, ¢รฯ Vaills Bubliaros, MD.mo Femando Cun, MD,--

Auguto D. Pifuant, MD
Eric Dumout, MD,' Fric Lavise, MD," Seggie G. Paian, MD," Luin Nombelu-Francs, MD,
 Jonathoe Lejpic, MD, \dagger Josep Roder-Calau, MD*

- 44/6688 (0.66\%)
- Predominantly LM
- More common in
- Women
- Balloon-expandable TAVI
- Valve-in-Valve

Heart Valve Innovation
St. Paul's Hospital, Vancouver

- LMH:
- $10.6 \pm 2.1 \mathrm{~mm}$ vs. $13.4 \pm 2.1 \mathrm{~mm}$
- <12mm - in obstruction 86\%
- <12mm - controls 26%
- SOV:
- $28.1 \pm 3.8 \mathrm{~mm}$ vs. $31.9 \pm 4.1 \mathrm{~mm}$
- $<30 \mathrm{~mm}$ - in obstruction 71\%
- <30mm - controls 33\%
- LMH < 12 mm and SOV <30mm
- obstruction 68\%
- controls 13\%

Ancillary root measurements \& Coronary height

Bulky calcifications \& Low LMH \& Shallow sinus

4- Help adjudicate Valve morphology in difficult cases

Tricuspid or not tricuspid?

Valve anatomy

Bicuspid

Valve anatomy

Bicuspid

Type 1

1 raphe

5- MDCT for Annular Sizing and THV Selection

The Annulus is Elliptical

The annulus is commonly oval-shaped Renortad in annravimatalu 500 of nationts

Any single diameter cannot adequately characterize the annulus "size" due to its elliptical non-circular configuration

Tops LF, Wood DA, Delgado V, et al. Noninvasive evaluation of the aortic root
with multislice computed tomography: implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging 2008; 3:25-32

The Virtual Basal Ring

Sinotubular junction
Aortic leaflets

Aortic Annular Diamete

Aortic Annulus
RC = Right coronary cusp; NC = Non-coronary cusp;
LC = Left coronary cusp

CT Annular Measures Can Predict PV Leak

* Valve stent diameter Mean annular diameter ${ }_{\text {MDCT }}$ AUC 0.84
* Valve stent diameter -Area-derived annular diameter $_{\text {MDCT }}$ AUC 0.86
* Valve stent area/ Annular $\operatorname{area}_{\text {MDCT }}$ AUC 0.87

Willson et al. JACC 2012

MDCT Can Provide Reproducible and Robust Sizing Recommendations

Vancouver MDCT Sizing Guidelines

Self Expanding Valve Sizing Recommendations Based on MDCT

	Diameter Range (mm)	Perimeter Range (mm)	Area Range $\left(\mathrm{mm}^{2}\right)$
23	$18-20$	$56.5-62.8$	$254.5-314.2$
26	$20-23$	$62.8-72.3$	$314.2-415.5$
29	$23-27$	$72.3-84.8$	$415.5-572.6$
31	$26-29$	$81.7-91.1$	$530.9-660.5$

Recent evidence supports

Area/Perimeter as the recommended method for TAVI sizing

Different Sizing Algorithms for Different Valves

From Theoretical to Practical

Impact of CT sizing on TAVR outcomes

The Impact of Integration of a Multidetector Computed Tomography Annulus Area Sizing Algorithm on Outcomes of Transcatheter Aortic Valve Replacement: A Prospective, Multicenter, Controlled Trial

Short Title: Computed Tomography Area Sizing for TAVR
Ronald K. Binder ${ }^{1}$, MD; John G. Webb ${ }^{1}$, MD; Alexander B. Willson ${ }^{1}$, MBBS; Marina Urena 2, MD; Nicolaj C. Hansson ${ }^{3}$, MD; Bjarne L. Norgaard ${ }^{3}$, MD; Philippe Pibarot ${ }^{2}$, MD; Marco Barbanti ${ }^{1}$, MD; Eric Larose ${ }^{2}$, MD; Melanie Freeman 1, MBBS; Eric Dumont ${ }^{2}$, MD; Chris Thompson ${ }^{1}$, MD; Miriam Wheeler ${ }^{1}$, MBChB; Robert R. Moss ${ }^{1}$, MD; Tae-hyun Yang ${ }^{1}$, MD; Sergio Pasian ${ }^{2}$, MD; Cameron Hague ${ }^{1}$, MD; Giang Nguyen ${ }^{1}$, MD; Rekha Raju ${ }^{1}$, MD $_{3}$ Stefan Toggweiler ${ }^{1}$, MD; James K. Min, MD ${ }^{5}$; David A. Wood ${ }^{4}$, MD; Josep Rodés-Cabau ${ }^{2}$, MD; Jonathon Leipsic ${ }^{1}$, MD.

- 266 patients in the trial
- 133 patients underwent TAVR with the MDCT sizing algorithm recommendation and 133 patients without the algorithm
- PVL> mild was present in 5.3% in the MDCT group and in 12.8% in the control group ($\mathrm{p}=0.032$)
- Composite of in-hospital death, aortic annulus rupture and PVL> moderate 3.8\% in the MDCT group and in 11.3% in the control group ($\mathrm{p}=0.020$)

CT Sizing helps optimize outcomes with Self Expanding Prosthesis

Source : Adams et al NEJM 2014

6- Preventing Annular Injury with MDCT

Annular rupture

Anatomical and Procedural Features Associated with Aortic Root Rupture During Balloon-Expandable Transcatheter Aortic Valve Replacement

Marco Barbanti, Tae-Hyun Yang, Josep Rodés-Cabau, Corrado Tamburino, David A. Wood, Hasan Jilaihawi, Philipp Blanke, Raj R. Makkar, Azeem Latib, Antonio Colombo, Giuseppe Tarantini, Rekha Raju, Ronald K. Binder, Giang Nguyen, Melanie Freeman, Henrique B. Ribeiro, Samir Kapadia, James Min, Gudrun Feuchtner, Ronen Gurtvich, Faisal Alqoofi, Marc Pelletier, Gian Paolo Ussia, Massimo Napodano, Fabio Sandoli de Brito, Jr., Susheel Kodali, Bjarne L. Norgaard, Nicolaj
C. Hansson, Gregor Pache, Sergio J. Canovas, Hongbin Zhang, Martin B. Leon, John G. Webb and Jonathon Leipsic

	Study group $(\mathbf{n}=\mathbf{3 1)}$	Uncontained rupture $\mathbf{(n = 2 0)}$ $(\mathbf{n}=\mathbf{1 1)}$	Contained rupture	
Mortality	48.4%	75.0%	0.0%	<0.001
Cardiovascular mortality	45.2%	70.0%	0.0%	<0.001
Disabling stroke	12.9%	10.0%	18.2%	0.447
Life-threatening bleeding	45.2%	60.0%	18.2%	0.049

Source: Barbanti et al. Circulation July 2013

Annular Rupture May not Be RandomInsights from MDCT

Univariate

Predictors of aortic root rupture

LVOT calcifications moderate/severe

Prosthesis oversizing $\geq \mathbf{2 0 \%}$

Odds Ratio (95\%CI) P value
$10.92(3.23-36.91)<0.001$
$8.38(2.67-26.33)<0.001$

Preventing extreme annular oversizing particularly in the setting of LVOT calcification

Case examples

Significant oversizing (>20\%) is possible ...Just do it in the right patient!

Case example \#1

- 26-mm SAPIEN XT
- 38.5% oversizing
\square No LVOT calcification
- Uneventful TAVR!

Case example \#2

- 26-mm SAPIEN XT
- 27.9\% oversizing
- Severe LVOT calcification
- Annular rupture!

Does calcium distribution matter?

Source: Leipsic RSNA 2014, Hansson et al in press JCCT

Sub-annular calcium below the non-coronary cusp is most predictive of rupture

7- Coronary occlusion in Valve-in-Valve Procedures

Complications Remain- Ostial Coronary Obstruction

Center \#30, case\#3
Mitroflow 25mm (ID 21mm)
Tranapical Edwards-SAPIEN 23mm

Center \#34, case\#6
Mitroflow 21mm (ID 17.3 mm)
Tranfemoral CoreValve 26 mm

Center \#29, case\#7
Sorin Freedom Stentless 21mm (ID 19mm)
Balloon Valvuloplasty
before attempted CoreValve implantation

Center \#13, case\#4
Sorin Freedom Stentless 23mm (ID 21mm)
Transfemoral CoreValve 26 mm

Center \#27, case\#3
CryoLife O'Brien (stentless) 25mm (ID 23mm) Transfemoral CoreValve 29mm

Center \#11, case\#11
Mosaic 21mm (ID 18.5mm)
Transapical Edwards-SAPIEN 23mm

Coronary obstruction in Valve-in-Valve Procedures

Valve design

Mitroflow \#27 in an aortic root model

Valve-in-Valve with SAPIEN 29mm

Assessment for Valve-in-Valve Procedures

Anatomical issues and potential measurements

1. Root anatomy

- Coronary artery height
- Sinus of Valsalva with
- Sinus height

2. Distortion of Anatomy

- Tilting of the surgical prosthesis
- Lower coronary height

Prediction of the the

 proximity of the coronary ostia to the anticipated final position of the displaced bioprosthetic leaflets after THVimplantation

Assessment for Valve-in-Valve Procedures

Virtual THV to Coronary (VTC) distance

Non-coaxial (tilted) bioprosthesis in capacious aortic root

Coaxial aligned bloprosthesis in noncapacious aortic root with narrow ST]

High risk: <3 mm, intermediate: 3 to 6 mm , low: >6 mm.

Assessment for Valve-in-Valve Procedures

Example

Conclusions

- MDCT is now well established as an important tool for annular sizing
- Allows for the discrimination of those patients historically at risk for annular rupture, coronary occlusion and PAR
- Field is moving from historical device selection based on sex or 2 D measurements to a truly individualized approach to THV selection
- Growing role in the assessment of risk of coronary occlusion in valve in valve procedures

