The Reality of Vulnerable Plaque Detection and Clinical Implications

Gary S. Mintz, MD

Cardiovascular Research Foundation New York, NY

Columbia University Medical Center

Currently, the only technique that has prospectively linked lesion phenotype to late events is VH-IVUS

VH-TCFA and Non Culprit Lesion Events in PROSPECT

Events versus number of factors $PB_{MLA} \ge 70\%$, MLA ≤ 4.0 mm², and/or VH-TCFA

VIVA: Virtual Histology in Vulnerable Atherosclerosis

- 932 non-culprit lesions in 170 pts were identified with 3vessel IVUS imaging
- At a median follow-up of 625 days, there were 18 culprit and non-culprit MACE in 16 pts
 - 14 revascularizations, 2 MIs, and 2 deaths
- Univariate predictors of non-culprit MACE
 - Non-calcified VH-TCFA (p=0.025)
 - MLA <4mm² (p=0.021)
 - Plaque burden >70% (p<0.001)
 - Remodeling index (p=0.014)

Calvert et al. JACC Cardiovasc Imaging 2011;4:894-901

Optical Coherence Tomography

Fibroatheroma

TCFA

Macrophage Accumulations

ROC Analysis of Validation of NIR Spectroscopy in 51 Autopsy Hearts (algorithm for detection of confluent [>0.2mm thick and >60°] and relatively superficial necrotic core [overlying mean fibrous cap thickness <0.45mm])

1-Percent Negative Agreement

NIRS vs Histology

314 calcified nodules in PROSPECT

- The prevalence of at least one calcified nodule was 16% per artery (250 of 1573) and 30% per patient (185 of 623).
- Two or more calcified nodules were detected in 48 coronary arteries (3%) in 76 patients (12%).
- The angiographic appearance was severe calcium in 3, moderate calcium in 35, hazy in 19, and normal in 257
- The VH-IVUS appearance was a fibroatheroma in 42% (116 of 276), but only a VH-TCFA in 5.

Lee et al. Am J Cardiol 2011;108:1547-51 Xu et al. Circulation, in press

Longitudinal distribution of 314 calcified nodules

OCT Erosion

How common are vulnerable plaques?

Number of thin-cap fibroatheromas in patients dying with MI, sudden death, or noncardiac causes and studied at necropsy

Cross-sectional analysis

Longitudinal analysis

	All pts	Pts with ≥1 ruptured plaque	Pts with ≥1 TCFA or ruptured plaque	Pts with CV death
# of patients	50	14	20	33
# of ruptured	19		19	15
plaques	(0.38/pt)		(0.95/pt)	(0.45/pt)
# fibroatheromas	193			
# TCFAs	23	15	23	18
	(0.46/pt)	(1.21/pt)	(1.15/pt)	(0.55/pt)

(Burke et al. J Am Coll Cardiol 2003;41:1874-86) (Cheruvu et al. J Am Coll Cardiol 2007;50:940-9)

Columbia University Medical Center

PROSPECT: Per patient incidence of VH-TCFAs

Are all non-culprit events in the first year post-PCI related to vulnerable plaques? Or are some related to incomplete revascularization at the time of initial PCI?

CARDIOVASCULAR RESEARCH

PROSPECT: Angiographic severity vs high risk morphology (n=3115)

	Quartile			
	1st	2nd	3rd	4th
QCA DS (%)	2.82 (2.56, 3.08)	9.95 (9.82, 10.08)	17.67 (17.47, 17.88)	33.52 (32.90, 34.14)
NC volume, %	12.3 (11.6, 13.0)	12.5 (11.8, 13.2)	13.0 (12.3, 13.7)	14.0 (13.3, 14.7)
VH-TCFA	13.4%	22.0%	24.4%	30.3%
FA	48.6%	56.2%	62.3%	72.3%
# of high risk morphologies Three Two One				
None 0%	1st	2nd	3rd	4th
CARDIOVASCULAR RESEARCH				Columbia Universit

Will imaging the proximal and mid segments of the three major epicardial vessels detect all vulnerable plaques?

Pathology spatial Distribution of **Advanced Coronary Lesions**

Angiographic location of acute coronary occlusions

(Cheruvu et al. J Am Coll Cardiol 2007;50:940-9) (Wang et al. Circulation 2004;110:278-84)

COLUMBIA UNIVERSITY MEDICAL CENTER

PROSPECT: Completeness of 3-vessel IVUS and VH-IVUS imaging

Event type	Total # of events	Baseline QCA at event site	Baseline IVUS at event site	Baseline VH at event site
All MACE	245	227	140	132
Culprit lesion related	120	120	84	76
Non culprit lesion related	107	107	56	56
- With RLP	51	51	31	31
- Without RLP	56	56	25	25
Indeterminate	18	0	0	0

Location of MACE Events

	All (n=228)	Culprit lesion related (n=121)	Non culprit lesion related (n=107)
LM	4 (1.8%)	1 (0.8%)	3 (2.8%)
LAD	82 (36.0%)	48 (39.7%)	34 (31.8%)
LCX	63 (27.6%)	30 (24.8%)	33 (30.8%)
RCA	79 (34.6%)	42 (34.7%)	37 (34.6%)
Proximal vessel	69 (30.3%)	43 (35.5%)	26 (24.3%)
Mid vessel	51 (22.4%)	30 (24.8%)	21 (19.6%)
Distal vessel	35 (15.4%)	18 (14.9%)	17 (15.9%)
Branch*	73 (32.0%)	30 (24.8%)	43 (40.2%)

Excludes indeterminate lesions. Includes, diagonal, ramus, obtuse marginal, R/L PDA, R/L PLAS.

Is three vessel invasive imaging safe?

Complications attributed to the 3-vessel IVUS imaging procedure (n=697, non-hierarchical)

Death	0 (0%)
MI	3 (0.4%)
- Q-wave (from dissection)	1
- non Q-wave (from dissection)	2
PCI or CABG	10 (1.4%
- CABG (from perforation)	1
- CABG (from dissection)	2
- PCI (from dissection)	9
Any imaging complication*	11 (1.6%

*Some pts had more than one complication

Safety becomes an even more important concern if imaging must be repeated periodically.

Change in non-culprit lesion phenotype in 106 patients (201 lesions) with plaque burden >40% from the Global VH Registry with baseline and 8-month follow-up VH analysis

- 75% of TCFAs healed and 25% remained unchanged although the location of the necrotic core in contact with the lumen shifted axially.
- Compared to TCFAs that healed, TCFAs that did not change were more proximal in location and had larger lumen area, vessel area, plaque area, calcium area, and necrotic core area.
- 12 new TCFAs were noted: 6 were PIT and 6 were ThFA at baseline.
- No fibrotic or fibrocalcific plaque evolved into a TCFA.

Baseline

Follow-up

CARDIOVASCULAR RESEARCH F O U N D A T I O N

Kubo et al. J Am Coll Cardiol 2010;55:1590-7

Columbia University Medical Center

Change in non-culprit lesion phenotype in 100 pts (100 lesions: plaque burden >40%) from HORIZONS: Baseline and 13-month follow-up VH-IVUS

Zhao et al. J Am Coll Cadiol 2011;57:E907

Columbia University Medical Center

And some vulnerable plaques rupture asymptomatically and are detected incidentally while others heal and contribute disease progression

- Maehara et al. J Am Coll Cardiol 2002;40:904-10
- Rioufol et al. Circulation. 2002;106:804-8
- Hong et al. Circulation 2004;110:928-33
- Fuji et al. Circulation 2003;108:2473-8
- Burke et al. Circulation 2001;103;934-40
- *Rioufol et al. Circulation 2004;110:2875-80*
- Hong et al. Atherosclerosis. 2007;19:107-14

How common are major vulnerable plaque events (death/MI) in 2012, really?

PROSPECT: 3-year follow-up hierarchical MACE assuming indeterminate events (ie., death) are non-culprit lesion related

Cardiac death, arrest or MI*	4.9% (31)	2.2% (14)	2.9% (18)
Composite MACE	20.4% (132)	12.9% (83)	13.3% (85)
Rehospitalization for unstable or progressive angina	15.4% (101)	10.4% (69)	10.5% (67)
MI (STEMI or NSTEMI)	2.7% (17)	1.7% (11)	1.2% (7)
Cardiac arrest	0.3% (2)	0.3% (2)	0% (0)
Cardiac death	1.9% (12)	0.2% (1)	1.8% (11)
	All	Culprit lesion related	Non culprit lesion related

*In patients post-PCI for STEMI/NSTEMI and treated with optimal medical therapy and followed as part of a clinical study

CARDIOVASCULAR RESEARCH

VIVA: Virtual Histology in Vulnerable Atherosclerosis

- 932 non-culprit lesions in 170 pts were identified with 3-vessel IVUS imaging
- At a median follow-up of 625 days, there were 18 culprit and non-culprit MACE in 16 pts
 - 14 revascularizations, 2 MIs, and 2 deaths

Calvert et al. JACC Cardiovasc Imaging 2011;4:894-901

Who should we study? Primary prevention versus secondary prevention?

Columbia University Medical Center

PROSPECT: Independent predictors of patient level events

	Hazard ratio	P value
Insulin dependent diabetes mellitus	3.32	0.005
Prior PCI	2.03	0.02

Variables entered into the model: age, gender, hypertension, insulin dependent diabetes, prior PCI, CRP at baseline, family history

Conclusion

- We can now say with confidence that we are able to detect TCFAs.
- However, that does not mean that searching for a vulnerable plaque in patients will ever make clinical sense unless we can identify a truly high risk patient population or one that does not respond to conventional medical therapy in order to justify invasive imaging – especially, since we do not have a focal therapy to offer.

Reference: Vancraeynest et al. Imaging the vulnerable plaque. J Am Coll Cardiol 2011;57:1961-79

