$7^{\text {th }}$ |MAGING \& PHYSIOLOGY SUMMIT 2014
Grand International Seoul Palmas, Seoul Korea
December 6, 2014 15:28-15:36 Main arena, Level 5
Invasive imaging for coronary artery disease
Case presentation
How to do stent sizing
and optimization by OCT

Takashi Kubo MD, PhD
Wakayama Medical University, Wakayama, Japan

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- St. Jude Medical, Terumo, Abbott Vascular, Pfizer
- St. Jude Medical, Terumo, Sumitomo
- No
- No
- No
- No
- No

Case: 71yo, M

Clinical diagnosis

Stable AP, AF

Clinical history

1978. CKD (Glomerular nephritis) \Rightarrow Hemodialysis 2003. Effort AP, LAD prox lesion, CABG (LITA to LAD) 2013. Scintiscan: LV inferior ischemia

Coronary risk factors

HT (-), DLP (-), DM (-), Obesity (-), Smoker (+)

Stent sizing and optimization by OCT
Pre-PCI

Pre-PCI ID:

 2013-NOV-12 18:02:50

Pullback Speed: $40 \mathrm{~mm} / \mathrm{sec}$ Pullback Length: 152.2 mm $0001 / 0605$

STC

Gain: 10
Contrast: 7 Gamma:
Depth:
4.5

Flush Media: Contrast (100\%)
FastView
Wakayama Medical University

Minimum lumen area site
Pre-PCI

Severe calcification

$149.9 \mathrm{~mm}[152.2 \mathrm{~mm}]$

Polymer damage of DES during PCI in OCT-derived severe calcified lesion

Shimokado, Kubo, Akasaka et al. Int J Cardiov Imag. 2013;29:1909-1913

Rotablater: diameter $=1.75 \mathrm{~mm}$

OFDI at post-rotablater

Minimum lumen area site

Calcification

Post-high pressure ballooning

Broken calcium plate

Post-high pressure ballooning $100 \mu \mathrm{~m}$

Broken calcium plate

Broken calcium plate

Prediction of calcium plate fracture by ballooning

OFDI was performed to assess vascular response immediately after high pressure ballooning in 51 patients with severe calcified coronary lesion.

Thickness distribution of calcium fracture

Median $=450 \mu \mathrm{~m}$; Lower quartile $=300 \mu \mathrm{~m}$; Upper quartile $=660 \mu \mathrm{~m}$; Minimum $=110 \mu \mathrm{~m}$; and Maximum $=770 \mu \mathrm{~m}$.

Conclusion. A calcium plate thickness < $505 \mu \mathrm{~m}$ was the corresponding cut-off value for predicting calcium plate fracture by high pressure ballooning.

Stent expansion at post-PCI

Minimum stent area

Stent expansion index

Minimum stent area and stent expansion index were significantly greater in the group with calcium fracture compared with the group without calcium fracture.

Restenosis and TLR at 10 months follow-up

Binary restenosis

Target lesion revascularization

The frequency of binary restenosis and target lesion revascularization was significantly lower in the group with calcium fracture compared with the group without calcium fracture.

Distal reference
Minimum lumen area site

Proximal reference

42 mm

Accuracy of OCT measurement in vivo

The accuracy of FD-OCT and IVUS measurements was evaluated by using in-vivo in humans ($n=100$, in 5 catheter laboratories).

In Vivo Measurements of Lumen Dimensions by QCA, FD-OCT, and IVUS. In this representative case, frequency domain optical coherence tomography (FDOCT) and intravascular ultrasound (IVUS) was performed for the proximal circumflex coronary artery stenosis of which minimum lumen diameter (MLD) was 1.59 mm in quantitative coronary angiography (QCA). MLA measured using FDOCT and IVUS was 2.75 mm 2 and 3.50 mm 2 (MLD was 1.87 mm and 2.13 mm), respectively.

Conclusion: MLD by IVUS was greater than that by FD-OCT (relative reference 9\%). MLD by QCA was smaller than that by FD-OCT (relative reference -5\%).

Vessel circumference approximation in OCT

Feasibility of approximating algorithm of vessel circumference in OCT were evaluated in 80 coronary artery segments.

Three points (x, y, z) are placed on the visible circular arc. The central point (x) is connected with the other two points (y and z) by straight lines. Through the mid-point of each straight line, perpendicular line is drawn. Intersection of the two perpendicular lines is assumed to be the center of the circle. This makes circular approximation.

Conclusion: By approximating algorithm of vessel circumference, OCT can estimate vessel area in coronary arteries with lipidic plaque.

Distal stent Promus 3*16

Proximal stent: Promus $\mathbf{3}^{* 28}$

Broken calcium plate

145.6 mm [145.6mm]

Stent malappsoition

Resolution of stent malapposition in EES

Serial OCT examination (post-stenting and 8-12 months follow-up) was performed to assess the change of stent malapposition of the $2^{\text {nd }}$ generation EES ($\mathrm{n}=38$).

Post-stenting

Follow-up

ISA at post-stenting (arrows) resolved at follow-up in EES [(A) Maximum ISA distance $=370 \mu \mathrm{~m}$ to $0 \mu \mathrm{~m}$; ISA area $=0.71 \mathrm{~mm}^{2}$ to $0 \mathrm{~mm}^{2}$; intra-stent lumen area $=7.18 \mathrm{~mm} 2$ to $5.91 \mathrm{~mm}^{2}$]

1-Specificity

Conclusion. An S-V distance $<355 \mu \mathrm{~m}$ was the corresponding cut-off value for a spontaneous resolution of malapposed strut after EES.

Post-balloon dilatation (Hiryu Plus $3^{*} 12 \mathrm{~mm}$, 20atm)

Final OFDI

Post-balloon dilatation

Pullback Speed: $40 \mathrm{~mm} / \mathrm{sec}$
Pullback Length:
123.0 mm
zU1s-NUV-12
$0001 / 0490$
19:40:56

STC
Gain: 10
Contrast: 7
$\begin{array}{lr}\text { Gamma: } & 1 \\ \text { Depth: } & 4.5\end{array}$
Flush Media: Contrast (100\%)
FastView

Minimum stent area site

Post-balloon ilatation

Lumen area $=6.1 \mathrm{~mm}^{2}$
Minimum lumen diameter $=2.59 \mathrm{~mm}$ Maximum lumen diameter $=\mathbf{3 . 0 0} \mathbf{~ m m}$

Maximum stent area site

Stent malapposition

Lumen area $=8.2 \mathrm{~mm}^{2}$
Minimum lumen diameter $=2.90 \mathrm{~mm}$ Maximum lumen diameter $=3.61 \mathrm{~mm}$

Malapposesd distance $=180 \mu \mathrm{~m}$

Lumen area $=6.9 \mathrm{~mm}^{2}$

$123.0 \mathrm{~mm}[123.0 \mathrm{~mm}]$

Conclusion

- OCT can provide valuable information for stent sizing and PCl optimization.

