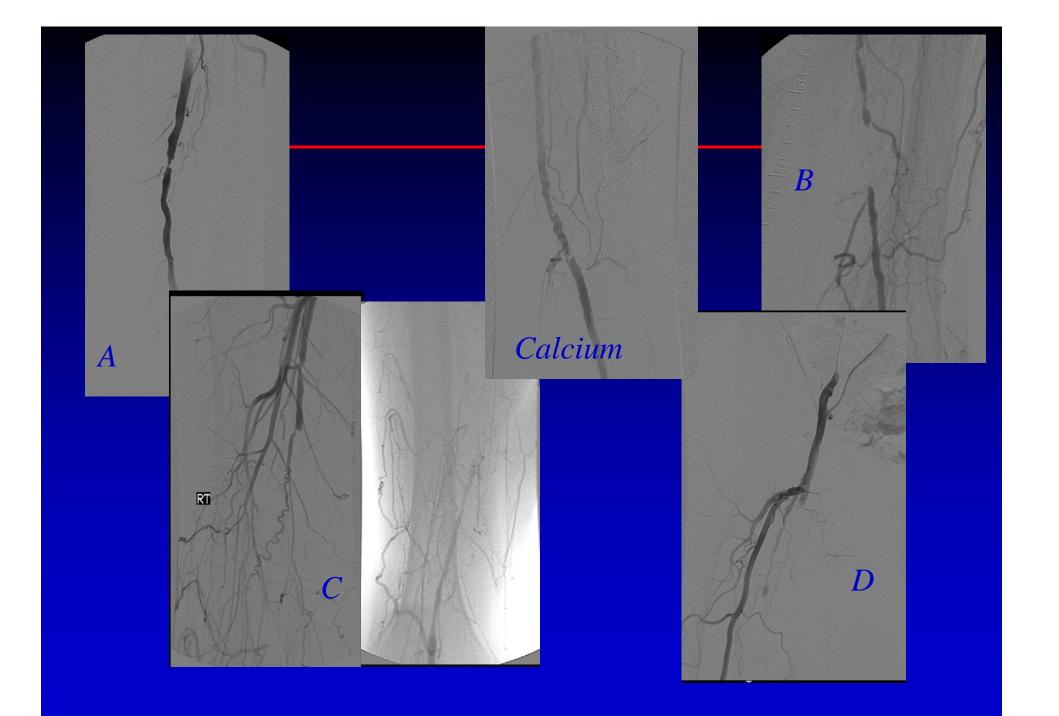
What's the Benchmark: Is there a Gold Standard for SFA Revascularization?

Lawrence A. Garcia, MD *Chief, Section Interventional Cardiology and Vascular Interventions Chief, Vascular Medicine Director, Non-invasive Vascular Laboratory St. Elizabeth's Medical Center Tufts University School of Medicine Boston, MA*

Conflict of Interest Statement

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.


Physician Name L Garcia

Company/Relationship BostonScientific EV3 Spectranetics Pathway Medical AngioSculpt iDev Technologies Covidien

> Scion Cardiovascular Arsenal Medical TissueGen Medical Primacea CVI Technologies

AdBoard (modest) Research/AdBoard AdBoard (unpaid) AdBoard (unpaid) AdBoard (unpaid) Research/AdBoard Consultant

Board of Directors Equity shareholder Equity shareholder Equity shareholder Equity shareholder

Defining the problem

- To date most meaningful studies have evaluated 5-6 cm lesions and only 2 studies have tested long lesions closer to 20 cms
- Determining the "gold" standard is difficult in this data "vacuum"
- Potential options
 - exercise programs
 - simple POBA
 - stenting technologies
 - DES
 - non-medicated
 - DCB and alternative therapies

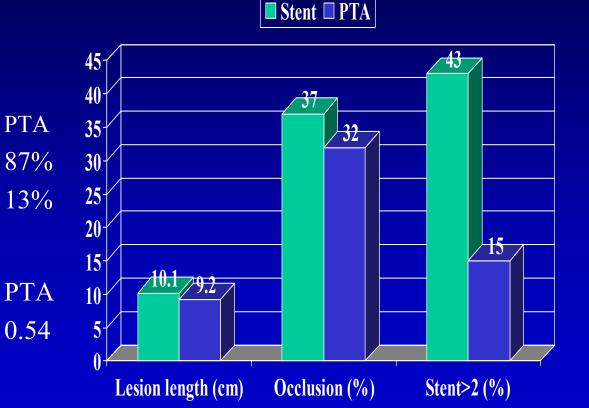
MIMIC: PTA vs medical therapy

Table 2 Outcomes in the MIMIC femoropopliteal trial.				
	Control	ΡΤΑ		Adjusted result (95% CI) <i>p</i> -value ^b
AWD (geometric mean, metres) 6 Months (n = 81)	167	202	Ratio PTA: control 1.21	1.06 (0.80 - 1.41) p = 0.69
12 Months ($n = 75$) 24 Months ($n = 71$) ^a	150 155	224	1.49	1.22 (0.88 - 1.67) p = 0.23 1.38 (1.01 - 1.90) p = 0.04
24 Months $(n = 71)$	100	240	1.30	1.30(1.01 - 1.90) p = 0.04
ICD (% attaining 200 m			Hazard ratio	
without claudication pain)			PTA:control c	
6 Months (n = 81)	23%	32%	1.56	1.78 (0.99-3.21) p = 0.05
12 Months (n = 75)	25%	42%	2.18	2.18 (1.15-4.12) p = 0.02
24 Months (n = 71)	22%	63%	2.83	3.11 (1.42–6.81) p = 0.004
Other outcomes at 24 months			Difference: PTA-control	
Mean ABPI (n = 73)	0.72	0.83	0.11	0.11 (0.03-0.20) p = 0.01
Mean SF36 physical score ($n = 79$)	39.2	40.9	1.7	-0.4 (-4.2 to 3.4) p = 0.82
Mean SF36 mental score $(n = 79)$	47.6	51.5	3.9	2.4 (-1.7 to 6.5) p = 0.25

AWD absolute walking distance, ICD initial claudication distance, ABPI ankle-brachial pressure index, SF36 short-form 36 summary scores.

Pre-specified primary outcome.

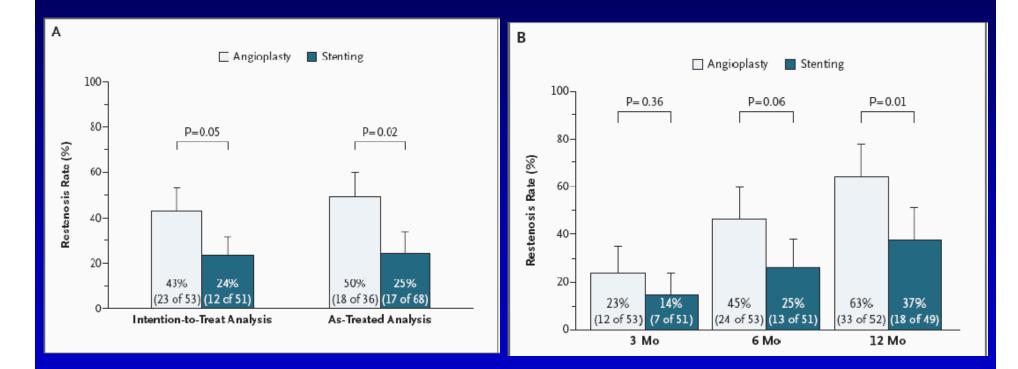
^b Adjusted for corresponding measure at baseline, age, sex, baseline smoking status and ABPI.


^c Hazard ratio for comparing probabilities of attaining a particular ICD (see Fig. 4).

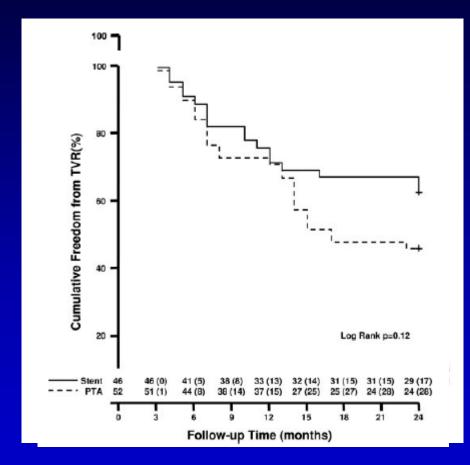
Greenhalgh GH et al *EurJVascEndovasSurg* 36:2008 680-88

Balloon Angioplasty versus Implantation of Nitinol Stents in the Superficial Femoral Artery

Martin Schillinger, M.D., Schila Sabeti, M.D., Christian Loewe, M.D., Petra Dick, M.D., Jasmin Amighi, M.D., Wolfgang Mlekusch, M.D., Oliver Schlager, M.D., Manfred Cejna, M.D., Johannes Lammer, M.D., and Erich Minar, M.D.


- 104 patients
- Claudicants/CLI
 - Stent
 RB<3 88%
 RB>4 12%
- ABI
 - Stent
 - 0.57

Schillinger NEJM 2006

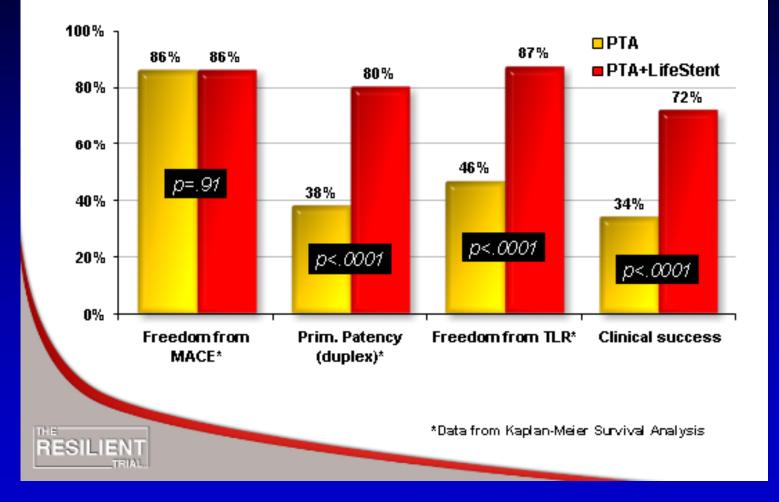

Balloon Angioplasty versus Implantation of Nitinol Stents in the Superficial Femoral Artery

Martin Schillinger, M.D., Schila Sabeti, M.D., Christian Loewe, M.D., Petra Dick, M.D., Jasmin Amighi, M.D., Wolfgang Mlekusch, M.D., Oliver Schlager, M.D., Manfred Cejna, M.D., Johannes Lammer, M.D., and Erich Minar, M.D.

ABSOLUTE 2-year

- At two years PP
 - Stenting 54%
 - PTA 32%
 - *p*<0.04
- Clinical difference
 - 43% vs 33%
 - -P=NS
- Walking distance
 No difference

TVR


Schillinger Circ 2007115: 2745-2749

RESILIENT

- Presented 2007 published 2009
- Lesion lengths up to 14 cm
- Lesions treated
 - PTA 5.7 cm (6.4 cm LL)
 - Stent 6.2 cm (7.0 cm LL)
- 2:1 randomization with PTA
 - PTA failure 40%
- Stent fractures
 - All stents imaged for SF
 - Fracture rate 2%

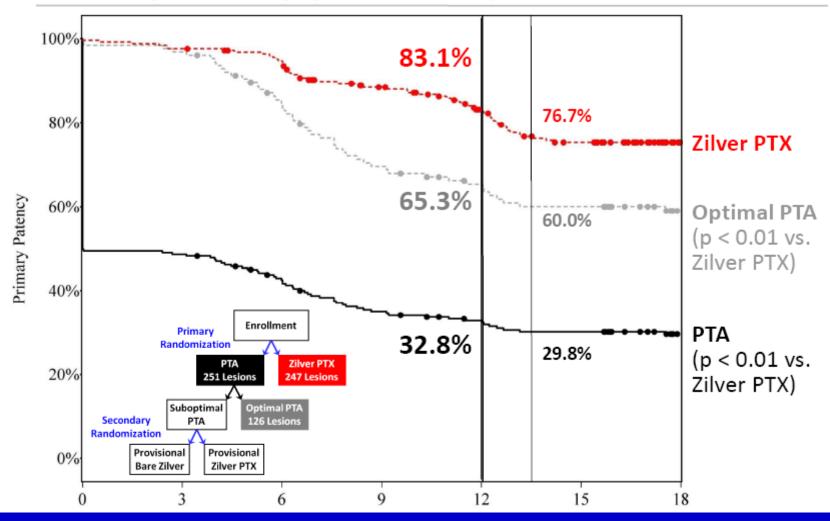
18		
_		
- c.u		i losi
-		
-	T Mr mail	isel 1
	She't flat M' main	

12-Month Results

Zilver PTX

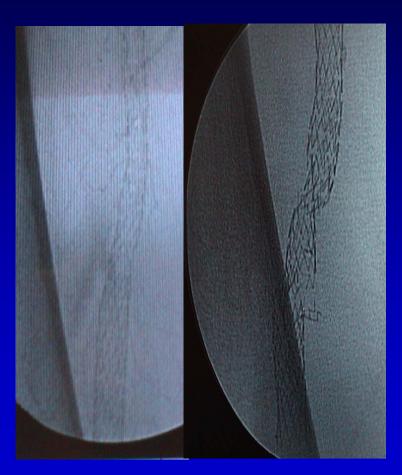
7

Clinical Trial Design



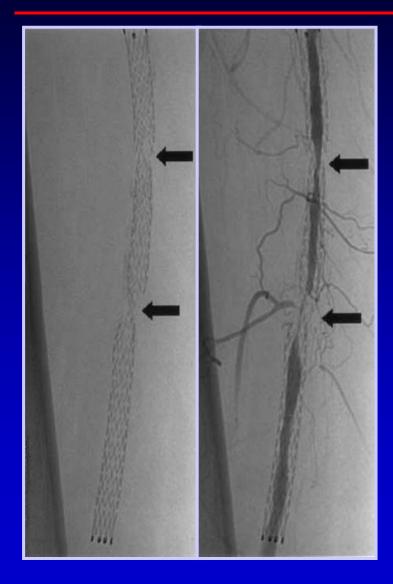
		РТА	Zilver PTX	P-value
Lesions		251	247	
Normal-to-normal lesion	n length (mm)	63 + 4 <u>1</u>	66 + 39	0.35
Stenosed lesion length (mm) ^{1,2}	53 ± 40	54 ± 41	0.76
Diameter stenosis (%) ¹		78 † 17	30 ± 17	0.44
Total occlusions		25%	30%	0.20
De novo lesions		94%	95 %	0.69
Lesion calcification ¹	None	5%	2%	
	Little	38%	26%	< 0.01*
	Moderate	22%	35%	< 0.01
	Severe	35%	37%	

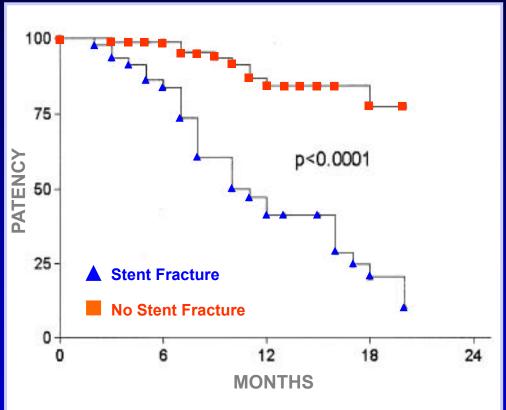
¹ Angiographic core lab assessment ² Region with > 20% diameter stenosis


*Statistically significant

Effectiveness Endpoint Primary Patency (PSVR < 2.0)

Why do SES stents fail?


- Dynamic nature of the artery treated
- Metal fatigue
 - Fracture
- Inherent restenosis
- Outflow issues



6 mo

Clinical Implication of Stent Fractures

Prevalence and Clinical Impact of Stent Fractures after Femoropopliteal Stenting. Scheinert et al. JACC Vol. 45, 2:312-5, 2005

Covered SES

- Single center data
 - Primary patency 85%
 Wiesinger *JEnvTher* 2005
 Saxon *JVIR* 2003
 Farraj *JIC* 2009
- Randomized trial VIBRANT recently completed
 - Results presented VIVA 2009
- "percutaneous bypass"

VIBRANT

- 148 patients (72/76)
- Lesion length 19cm
- Total occlusions 59%
- Primary patency

 Viabhan	53%
 SES	58%

- Restenosis
 - Viabhan

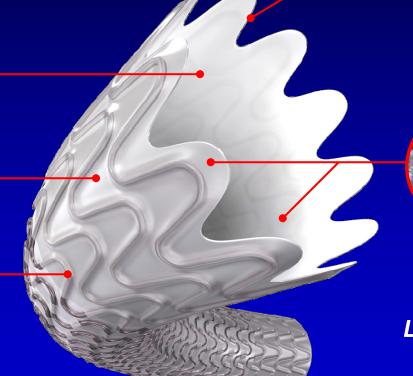
proximal 50% distal 6%

- 9 CTO's at f/u
 - 2 with acute limb (non-covered)
- Fractures

 Viabhan	1/47	(2%)

-3L3 10/32 (31/0)	– SES	16/52	(31%)
-------------------	-------	-------	-------

Ansel presentation VIVA09 Oct2009



VIPER

Ultra-thin wall ePTFE tube

Unique, durable bonding film

Polished nitinol support

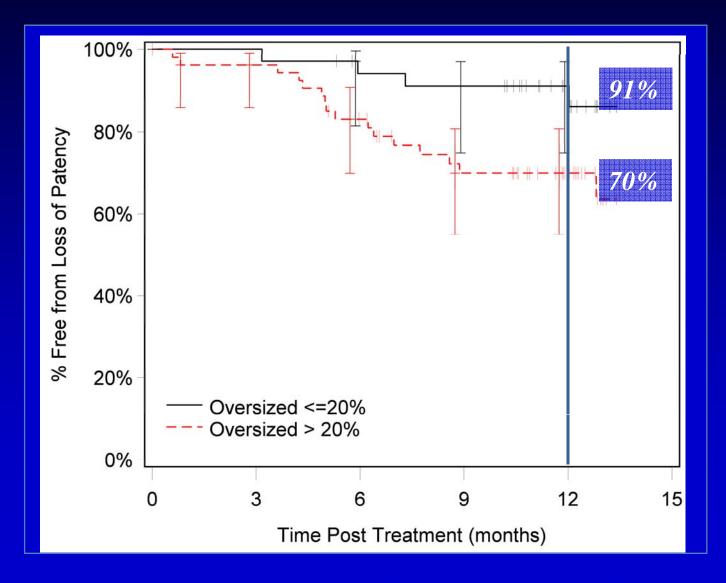
Contoured proximal edge

CARMEDA[®] Bioactive Surface (CBAS[®] Surface)

Lengths: 2.5, 5, 10, 15 cm

Diameters: 5–8 mm

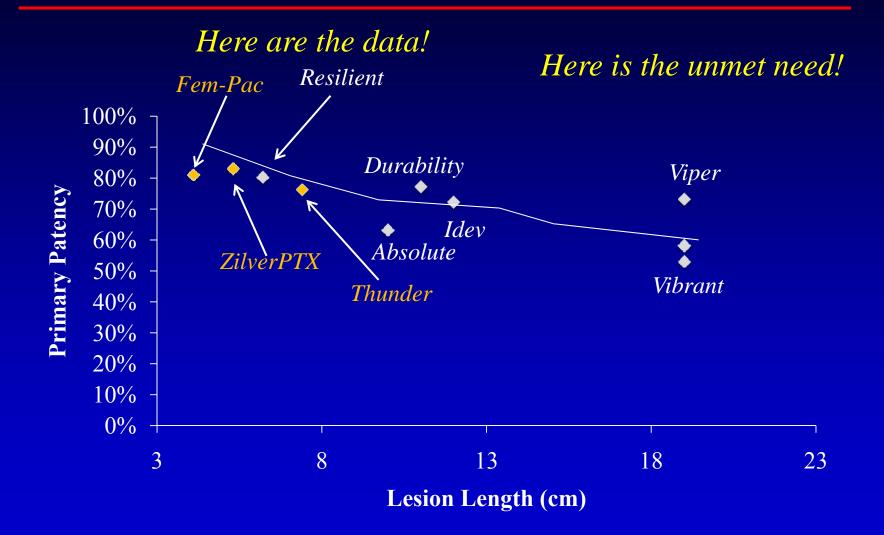
Lesion Characteristics


	Gore VIPER Clinical Study
Patients Enrolled	119
Treated Occlusions	56%
Lesion Length	19 cm
Lesion Calcification	
none-mild	39%
moderate-severe	61%
Tibial Runoff	
1 vessel	21%
2 vessel	33%
3 vessel	46%
Patients Enrolled	119

One patient excluded for treatment with device without heparin

One-Year Primary Patency by Subgroup

	Primary Patency
Overall	74%
Device Diameter	
<mark>5 mm (n= 23)</mark>	79%
<mark>6 mm (n= 85)</mark>	70%
7 mm (n= 8)	100%
Lesion Length	
≤ 20 cm (n= 68)	75%
> 20 cm (n= 51)	72%
Vessel Diameter at Landing Zone ≥ 4.0 mm by Core Lab (n= 53)	87%


Effects of Device Sizing: Proximal

Current endovascular data

Trial	Patients (n)	Device	Lesion length (cm)	1 year primary patency (%)
MIMIC	81	PTA	NA	NA
ABSOLUTE	104	Stent	10.2	63
RESILIENT	137	Stent	5.7	80
VIBRANT	76	Stent graft	19.6	53
VIPER	119	Stent graft	19.3	70
ZilverPTX	240	DES-SES	5.3	84
THUNDER	75	DEB	7.4	74
LEVANT	50	DEB	8.1	78

Trial Outcomes 2012 at 12 months

Debulking Therapies

•Laser

Rotational devicesDirectional atherectomy

Primary data

- Many registries with primary outcomes either, patency or safety
- Unfortunately, little primary data exists for primary patency of many atherectomy devices in a core lab driven trial/registry

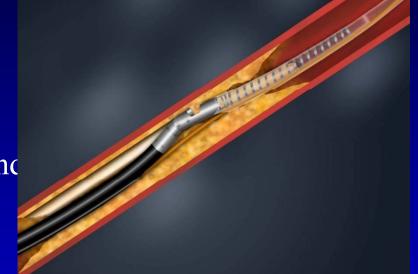
Rotational devices

Pathway (rotational debulking)


- Rotates, Aspirates, Adjunctive RX
- Early data- 4.9 cm
- JET registry will begin 2012

CSI (sanding debulking)

- Centrifugal force
 - Sands atheroma
 - Debris relatively small
 - <1-7 μm
- Offset burr determines diameter
- Oasis trial used for approval- 3.1 cm
- CONFIRM registry 3000 patients device safety, efficacy study


Plaque Excision

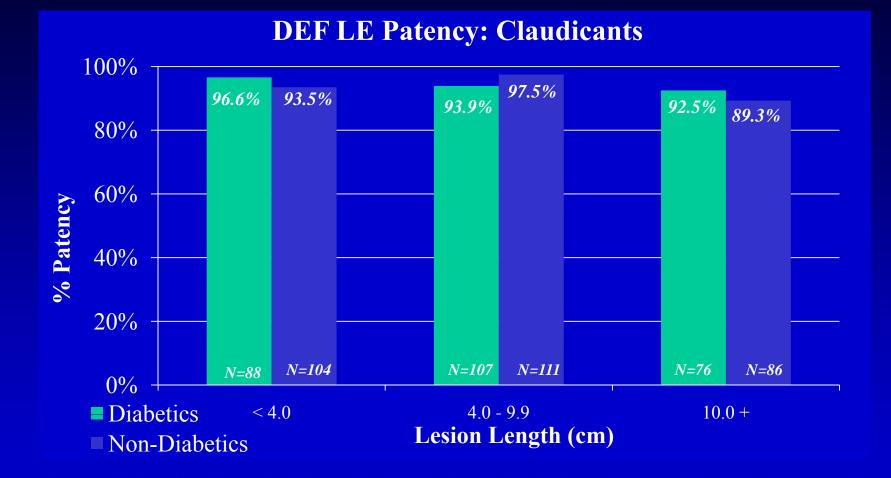
- DEFINITIVE LE completed enrollment
 - 800 patients /1200 lesions
 - RCC 1-6
 - Lesion Length \leq 20 cm
- Definitive LE independent core lab driven data angiographic and ultrasound endpoints
- DEFINITIVE AR start date Q4 2011

Key Eligibility Criteria

- Inclusion Criteria
 - RCC 1-6
 - $\ge 50\%$ stenosis
 - Lesion Length ≤ 20 cm
 - Reference Vessel $\geq 1.5 \text{ mm}$ and
- Exclusion Criteria
 - Severe calcification
 - In-stent restenosis
 - Aneurysmal target vessel

Summary of all Lesions (Core Lab)

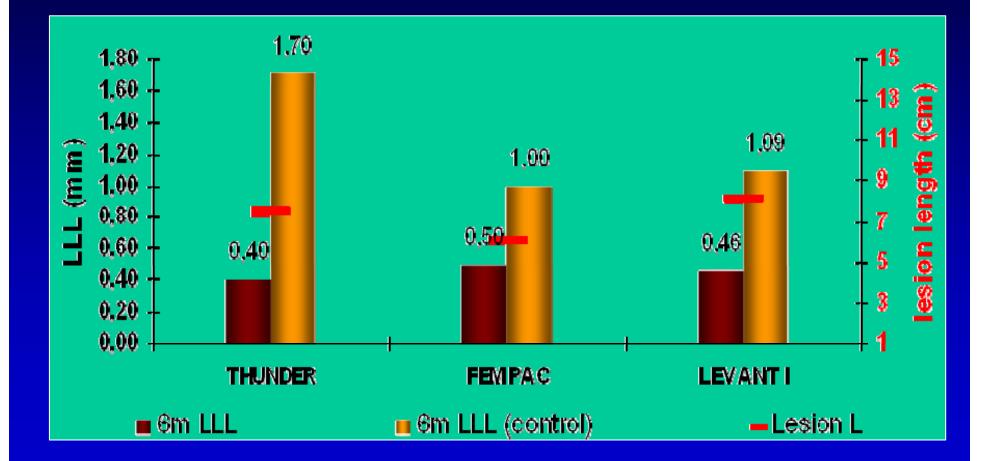
	Claudication (RCC 1-3)	CLI (RCC 4-6)	All Subjects (RCC 1-6)
Number of Patients	599	201	800
Number of Lesions	737	274	1011
Lesion Length Distribution (mean length-cm)			
10.0 cm and up (mean lesion length: 14.6)	29.2% (215)	24.5% (67)	27.9% (282)
4.0 to 9.9 cm (mean lesion length: 6.5)	41.3% (304)	40.5% (111)	41.1% (415)
Less than 4 cm (mean lesion length: 2.2)	29.6% (218)	35.0% (96)	31.1% (314)
Mean Longest Lesion per Subject - overall (cm)	8.3 ± 5.4	8.3 ± 5.7	8.3 ± 5.4
Mean Lesion Length – overall (cm)	7.5 ± 5.3	7.1 ± 5.4	7.4 ± 5.3


Lesion Length by Vessel (Core Lab)

	Claudication (RCC 1-3)	CLI (RCC 4-6)	All Subjects (RCC 1-6)
Mean Lesion Length by Vessel (cm)			
SFA	8.2 ± 5.6 (n=532)	8.5 ± 6.1 (n=132)	8.3 ± 5.7 (n=664)
Popliteal	6.0 ± 4.0 (n=113)	5.5 ± 3.6 (n=47)	5.8 ± 3.9 (n=160)
Infrapopliteal	5.5 ± 4.1 (n=92)	$6.0 \pm 4.5 (n=95)$	5.8 ± 4.3 (n=187)
% Lesions in SFA	72.2% (n=532)	48.2% (n=132)	65.7% (n=664)
Mean Total SFA Burden (cm)	9.2 ± 6.1 (n=474)	9.9 ± 6.8 (n=114)	9.3 ± 6.2 (n=588)

6-Month Primary Endpoints

Endpoint / Cohort	180 days (6-month visit target)	210 days (End of 6-month window)
Primary Patency (lesions)	Rate (# with endpoint data)	Rate (# with endpoint data)
All Claudicants (n=737)	94.1% (n=571*)	87.6% (n=485)
Diabetics (n=344)*	94.4% (n=274)	87.1% (n=232)
Non-Diabetics (n=393)*	93.7% (n=299)	88.1% (n=253)
Freedom from Amputation (patients)	Rate (# at risk)	Rate (# at risk)
All CLI Subjects (n=201)	97.3% (n=143)	97.3% (n=129)


180-Day Primary Patency, Claudicants by Lesion Length (Core Lab)

Future Directions

Is this the "Holy Grail"?

DEB in Femoro-popliteal Lesions Summary 6-Months LLL Outcomes

Devices not yet approved in the US

Infra-inguinal revascularization

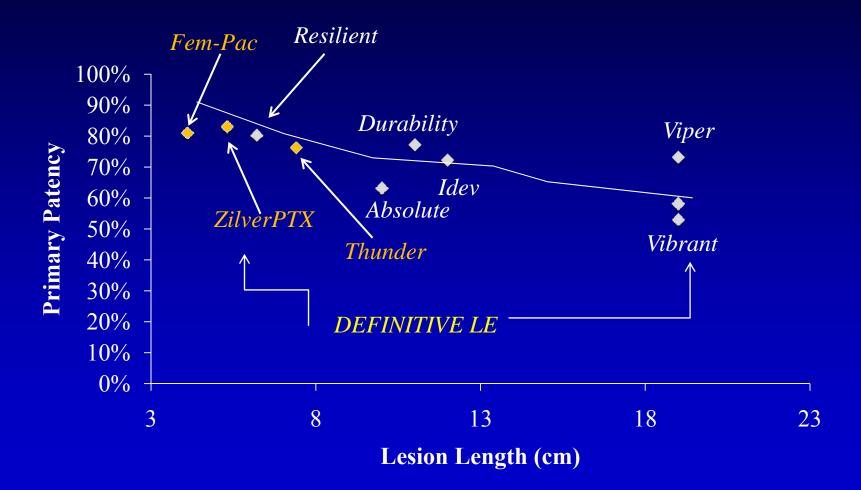
80%

2-7%

85%

83%

No data


- Primary patency stenting
 - Long lesions (>10cm)
 - PTA ?<30%
 Stenting 58-63%

 Fractures 2-7%
 Covered stenting 53%
 DES ??
 - Short lesions (<10cm)
 - PTA 64%
 - Stenting
 - Fractures
 - Covered stenting
 - DES
 - Combined therapy

- Primary patency alternative Rx
 - Athero-ablative

Short lesions	??
 Long lesions 	NA
Adjunctive Rx	??
 Rotational atherectomy 	
Short lesions	?50%
 Long lesions 	NA
Adjunctive Rx	??
– Directional atherectomy	
Short lesions	>80%
Long lesion	>?70
Adjunctive Rx	??
 Combined therapy 	No data

Trial Outcomes 2012 at 12 months

What's the benchmark?

- Unfortunately, current stent data limited to TASC A and B
- DES gain was 4% at 1 year compared with similar 5 cm lesion BMS
- "real world" SFA lengths VIBRANT 53/58% primary patency at 12 months, VIPER 70% with "improved" stent graft technology
- Non-stent technologies, only directional atherectomy has future data coming
 - Preliminary data will include TASC A-C lesions
- Current data would suggest stent technology default therapy with potential repeat revascularization likely
- Alternative therapies, i.e. directional atherectomy, outcomes will be reported shortly. Supplanting stenting will depend on the outcome of the trials
- Combined therapy(s) appears appealing though untested may represent the future benchmark