

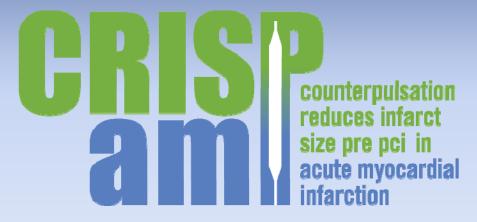
Duke Heart Center

Manesh R. Patel, MD Assistant Professor of Medicine Duke University Medical Center

Duke Heart Center

Disclosures

- Interventional cardiologist
 - Clinical Cardiovascular MRI and Vascular Ultrasound
- **Research Grants:**
 - NHLB, AHRQ, AstraZeneca, Pleuristem, Johnson and Johnson, **Maquet / Datascope**
- **Advisory Board/Consulting:**
 - Genzyme, Bayer, Baxter Healthcare, Ortho McNeil Jansen, theHeart.org, Medscape, Maquet, CSI technologies
- **Professional Society Roles:**
 - Member ACC/AHA AUC Task Force
 - Chair of Writing Group for ACC/AHA Coronary Revascularization **Appropriateness Criteria**
 - Chair of AHA Diagnostic and Interventional Cath Committee



Outline

- Cardiogenic shock will not be covered
 - Current guidelines based recommend use of ventricular support at time of primary PCI
 - Ongoing IABP shock trial
- Do you need to routinely support patients with larger STEMI?

Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock: The CRISP AMI Randomized Trial

Manesh R. Patel, MD, Richard W. Smalling, MD, PhD, Holger Thiele, Prof Dr med, Huiman X. Barnhart, PhD, Yi Zhou, PhD, Praveen Chandra, MD, Derek Chew, MD, Marc Cohen, MD, John French, MB CHB, PhD, Divaka Perera, MD,E. Magnus Ohman, MD

Background

- Despite improvements in STEMI care
 - The 6 month mortality remains high ~10%¹
- Intra-aortic balloon counterpulsation
 - †Diastolic arterial pressure (coronary perfusion pressure)
 - – ↓Simultaneously decrease afterload and left ventricular end diastolic pressure (LVEDP) both work to decrease oxygen consumption
 - Decreases infarct expansion when placed prior to reperfusion in animal studies ^{2,3}

¹Heart disease and stroke statistics--2009 update. Circulation 2009;119:e21-181.

²LeDoux JF et. al.. Catheterization & Cardiovascular Interventions 2008;72:513-21.

³Azevedo CF et. al. European Heart Journal 2005;26:1235-41.

To determine whether routine initiation of intraaortic balloon counterpulsation (IABC) before mechanical reperfusion compared to standard of care (SOC) primary PCI decreases infarct size in patients with anterior ST-segment elevation myocardial infarction (STEMI) without cardiogenic shock

Study Design

Anterior STEMI without Shock

Inclusion Criteria

- Anterior STEMI
 2 mm in 2 contiguous leads or at least 4 mm in the anterior leads
- Planned Primary PCI within 6 hrs
- Adult able to consent

Intra-aortic Balloon Counterpulsation prior to PCI

Randomize Open Label (n ~ 300)

Standard of Care Primary PCI

At least 12 hours of IABC post PCI

Routine Post PCI care

Cardiac MRI performed day 3-5 post PCI

Primary Endpoint: Infarct Size on CMR

- 1. All Patients with CMR data
- 2. Patients with Prox LAD occlusion TIMI 0/1 flow

Clinical Events - 6 months

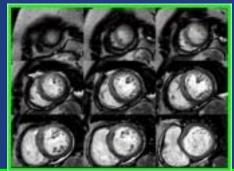
<u>clinicaltrials.gov</u> as # NCT00833612. Also at <u>controlled-trials.com</u> #ISRCTN89012474

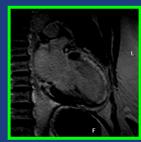
Exclusion Criteria

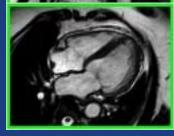
- Known Contraindication to MRI
- Prior Thrombolytic Therapy for STEMI
- Cardiogenic Shock
- Prior MI, CABG, or ESRD
- Contraindications to IABC
 - Known Severe AI, AAA, or severe peripheral artery disease
 - ->400 lbs of < 4 feet

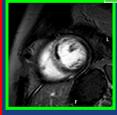
- Sample Size
 - Estimated Infarct size
 - All patients (25.3 -26.6% LV)^{1,2} and (19.9 28.8% LV)^{1,2} prox. LAD TIMI 0/1
 - 25% reduction (270 patients) 10% CMR data missing
 - >80% power, Type 1 error 0.025 (2-sided)
 - − ~ 300 patients
- Primary Endpoint Evaluation: Infarct Size on CMR
 - Modified ITT all patients with CMR data
 - All CMR patients with proximal LAD occlusion TIMI 0/1
- Primary Safety Evaluation: Major vascular complications and Major bleeding
- Clinical Outcomes: 6-month rate all cause mortality, MACE

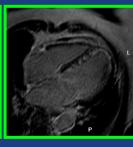
¹ Patel et al. Jacc: Cardiovascular Imaging 2010;3:52-60


² Thiele et al. Circulation 2008 Jul 1;118(1):49-57 Epub 2008 Jun 16


CMR Protocol




Contrastinjection 0.15 mmol/kg/KG Bolus Gadovist i.v.



0

5

10

20

25

30

35

40

Survey

Function 4-chamber 2-chamber **Edema** 3 short axes

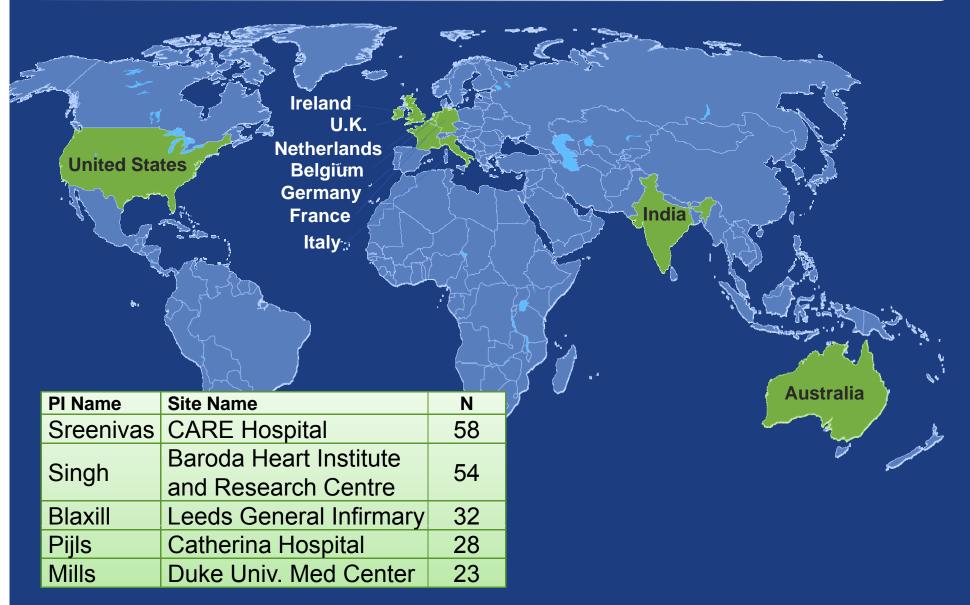
Early enhancement Short axes Apex-Base

15

Function
Short axes
Apex-Base

Delayed enhancement Short axes Apex-Base Delayed enhancement 4-chamber 2-chamber Time (min)

SSFP sequence (TR/TE/flip = 3.2ms/1.2ms/60 °)


T2 STIR sequence (TR/TE/flip = 2 heart beats/80ms/90°) slice thickness: 8-10 mm Inversion recovery gradient echo sequence (TR/TE/flip 2.8ms/1.1ms/15°) slice thickness: 8-10 mm, no gap SSFP sequence (TR/TE/flip = 3.2ms/1.2ms/60°) slice thickness: 8-10 mm, no gap

Inversion recovery gradient echo sequence (TR/TE/flip 2.8ms/1.1ms/15°) slice thickness: 8-10 mm, no gap

Enrollment

9 countries, 30 sites, 337 patients

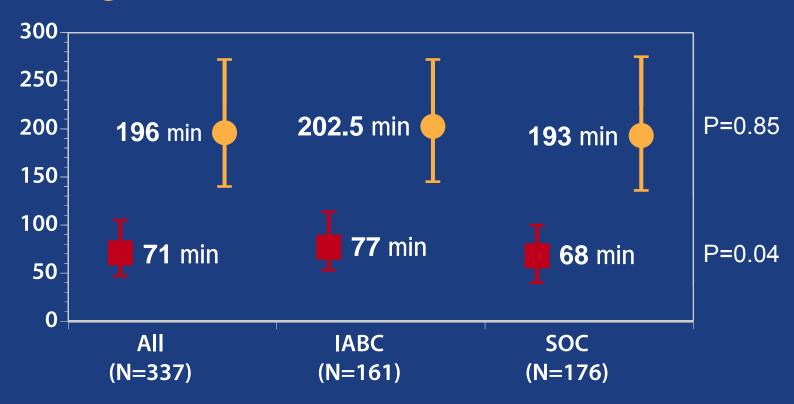
Study Conduct

Randomized* N=337

		IABC N=161	SOC N=176	ı	
Received intervention		153 (95.03%)	161 (91.48%)		
Withdrew		4 2			
Lost to follow-up	•	Crossing over to IABC			
MRI not performed		Sustained hypotension/Cardiogenic shock To prevent event post-vessel dissection			
Died	Failed PCI of IR vessel Continued chest pain				
Unstable					
Metallic contraindic	Metallic contraindication		1		
Unable to tolerate	te 11 18		18		
Other		6 0			
MRI performed, not evaluable 5 7		7			

	AII (N=337)	IABC (N=161)	SOC (N=176)
Age, median (25th, 75th), yrs	56.6 (48.4, 65.6)	56.1 (48.3, 64.3)	57.7 (48.6, 66.4)
Male, %	81.9	82.0	81.8
Race, %			
White	47.8	50.3	45.5
Asian	45.1	46.6	43.8
Black or African American	4.7	1.9	7.4
Other	2.1	1.2	2.8
Medical history, %			
Hypertension on drug tx.	29.4	24.2	34.1
Current nicotine use	31.8	33.1	30.7
Dyslipidemia on drug tx.	12.5	12.5	12.5
Diabetes mellitus	18.7	16.8	20.5

	AII (N=337)	IABC (N=161)	SOC (N=176)
SBP, median (25th, 75th), mm Hg	131.0 (118.0, 150.0)	130.0 (113.0, 150.0)	135.0 (120.0, 151.0)
DBP, median (25th, 75th), mm Hg	80.0 (70.0, 92.0)	80.0 (70.0, 92.0)	80.0 (71.5, 92.0)
HR, median (25th, 75th), bpm	81.0 (71.0, 94.0)	81.0 (71.0, 93.0)	80.0 (70.0, 94.0)
ST ↑ in anterior leads, no. (%)			
0–<2 mm	0 (0.0)	0 (0.0)	0 (0.0)
2–<4 mm	1 (0.3)	0 (0.0)	1 (0.6)
4–<6 mm	135 (40.1)	61 (37.9)	74 (42.0)
≥6 mm	201 (59.6)	100 (62.1)	101 (57.4)



	AII N=337	IABC N=161	SOC N=176
PCI			
PCI performed, %	94.3	96.3	92.6
Infarct-related artery			
Left anterior descending, %	97.6	99.4	96.0
Infarct-related artery stenosis location			
Proximal, %	62.9	64.8	61.2
Infarct-related artery TIMI flow pre-interventi	on		
Grade 0, %	65.3	66.0	64.7
Grade 1, %	10.3	11.3	9.4
Infarct-related artery final TIMI flow post-inte			
Grade 3, %	94.2	92.9	95.3

Time to Treatment

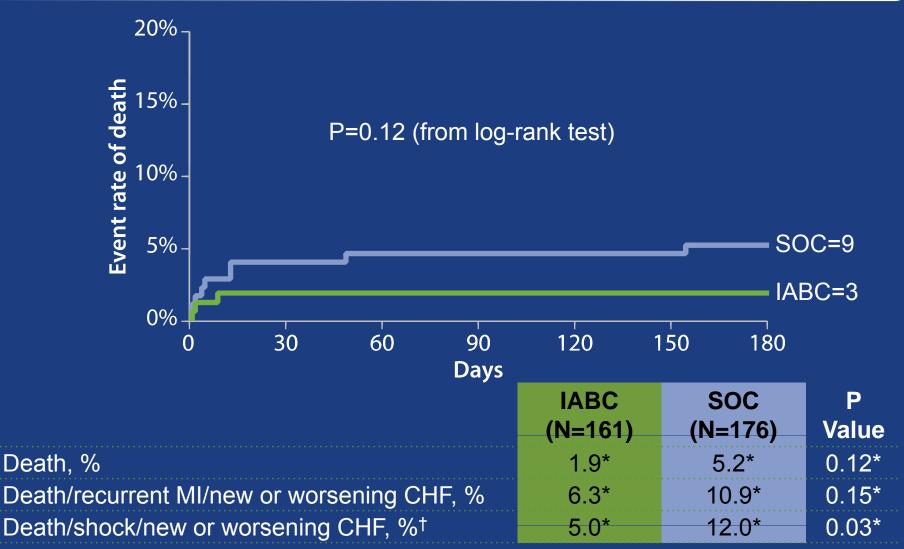
- First medical contact to first device*
- ——— Symptom onset to 1st device

Primary outcome

	AII (N=337)	IABC (N=161)	SOC (N=176)	P Value
Primary endpoint				
Infarct size (% LV), mo	dified ITT all pati	ents with CMR da	ata	0.060
N	275	133	142	
Mean	39.8	42.1	37.5	
Median	38.8	42.8	36.2	
Infarct size (% LV), modified ITT patients prox. LAD and TIMI flow 0/1				
N	192	93	99	
Mean	44.4	46.7	42.3	
Median	42.1	45.1	38.6	

Co-primary endpoint: 2-sided p=0.025

30-day Clinical Events



	IABC (N=161)	SOC (N=176)	P Value
Death, %	1.9*	4.0*	0.26*
Stroke, %	1.9	0.6	0.35
Major bleed per GUSTO 1 definition or transfusion, %	3.1	1.7	0.49
Vascular complications, (n) %	7(4.3)	2 (1.1)	0.09
Major limb ischemia requiring operative intervention (n)	0	0	
Distal embolization (n)	0	0	
Major dissection (n)	2	0	
Pseudoaneurysm or AV fistula (n)	3	2	
Hematoma >5 cm (n)	3	0	

^{*}From KM curves and log-rank test.

All Cause Death – 6 months

*From KM curves and log-rank test. †Exploratory analysis.

Conclusion

Among Patients with Acute Anterior STEMI without cardiogenic shock use of Intra-aortic counterpulsation prior to PCI compared to standard of care PCI:

- 1.Does not reduce infarct size
- 2.All cause mortality at 6 months was not different
- 3. Exploratory composite clinical endpoint favored of IABC

Lessons for Current and Future Care

- These findings do not support the <u>routine</u> use of IABC prior to PCI in Anterior STEMI patients without cardiogenic shock,
- Clinicians should continue to be vigilant about identifying patients who are at risk for rapid deterioration or hypotension that may benefit from support, as seen with the cross-over in this trial (8.5%)
- Acute STEMI studies are feasible without significant increases in door-to-device times

Final Thought

- Long Term Follow up of CRISP AMI is needed as the acute events and hazard may not have been represented in CMR
- Current practice guidelines recommend no routine support

Acknowledgements

CRISP Steering Committee

Manesh R. Patel, Holger Thiele, Richard W. Smalling, Praveen Chandra, Marc Cohen, Divaka Perera, Derek Chew, John French, E. Magnus Ohman

CRISP AMI investigators

Sreenivas Kumar A., Singh, Blaxill, Pijls, Mills, Thomas, Henriksen, Smalling, Passey, Bashir, McCann, Weintraub, Cohen, Vranckx, Thiele, Reddy, Schwab, Ling, Garg, Chandra, Sinhal, Casale, Banerjee, Khanna, Hillegass, Varghese, Satler, Strasser, Biederman, Shavelle, Valente, Lefevre, Kaluski, Carozza Jr.. Weeks. Bush. Saligrama, Bingi. Talwar, Diebele

DSMB

Eric Bates, David Holmes, Richard Trout

Global Coordinating Center

Duke Clinical Research Institute

- •Pam Monds, Project Lead
- •Dorothy J Wagstaff, Lead Clinical Data Specialist
- •Joey Zhou, Huiman Barnhardt Statistician
- •Karen Ramsey, Lead CRA

MRI Core Lab

The Heart Center Leipzig -University Hospital

- •Matthias Gutberlet Director, Maren Redlich
- Fabian Juhrich.

Regional Centers groups

- •Meredith Cooney, Flinders Coordinating Centre, Australia/NZ Lead
- Tanya Fawcett, MAQUET CV, Europe Lead
- •Vaibhav S. Pawar, Jubilant Clinsys Ltd., India Lead