Next Generation TAVI Systems

Eberhard Grube MD, FACC, FSCAI
University Hospital, Dept of Medicine II, Bonn, Germany
Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
Stanford University, Palo Alto, California, USA
Within the past 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

<table>
<thead>
<tr>
<th>Physician Name</th>
<th>Company/Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eberhard Grube, MD</td>
<td>Medtronic, CoreValve: C, SB, AB, OF</td>
</tr>
<tr>
<td></td>
<td>Sadra Medical: E, C, SB, AB</td>
</tr>
<tr>
<td></td>
<td>Direct Flow: C, SB, AB</td>
</tr>
<tr>
<td></td>
<td>Mitralign: AB, SB, E</td>
</tr>
<tr>
<td></td>
<td>Symetis: AB</td>
</tr>
<tr>
<td></td>
<td>Boston Scientific: C, SB, AB</td>
</tr>
<tr>
<td></td>
<td>Biosensors: E, SB, C, AB</td>
</tr>
<tr>
<td></td>
<td>Cordis: AB</td>
</tr>
<tr>
<td></td>
<td>Kona Medical: E, AB</td>
</tr>
<tr>
<td></td>
<td>Maya Medical: E, AB</td>
</tr>
<tr>
<td></td>
<td>Abbott Vascular: AB</td>
</tr>
<tr>
<td></td>
<td>Capella: SB, C, AB</td>
</tr>
<tr>
<td></td>
<td>InSeal Medical: AB</td>
</tr>
<tr>
<td></td>
<td>Valtec: E, SB</td>
</tr>
<tr>
<td></td>
<td>Claret, SB</td>
</tr>
</tbody>
</table>
TAVI – Current Issues

• Device related Issues
 – Lack in Control and Accuracy in Positioning
 – Lack of Retrievability
 – Paravalvular Leack
 – Access Site Complications
 – Stroke
 – Pacemaker Need
 – Profile size
New TAVI valves are coming to the market in a few year’s time

Today
- Medtronic CoreValve
- Edwards Sapien

Tomorrow
- Next Gen. Medtronic CoreValve
- Boston Sci. Lotus™
- Medtronic Engager
- Saint Jude Portico™
- Edwards Sapien XT
- Direct Flow
- JenaValve
- Symetis ACCURATE
CoreValve Innovation

Focused Efforts on:
• Expansion of patient access
• Further improvement of ease of use
• Continue to advance patient and procedural outcome
CoreValve Evolut Innovation Pipeline

- CoreValve Evolut
 - 23 mm
 - Delivery System

- Next Gen
 - Delivery System

- CoreValve Evolut Recaptureable
 - 23 mm
 - Also compatible with CoreValve 26/29/31 mm

- CoreValve Evolut Recaptureable
 - 26/29/31 mm

Also compatible with AccuTrak Delivery System

18 mm to 29 mm Annulus Size Range to Avoid Patient Prosthesis Mismatch
Recapturable after Valve Deployment

Retrievable, Repositionable, Resheathable

• More control for final valve deployment → Should contribute to reduced PVL and conduction disturbance

• Repositionable system with 18 Fr delivery across full valve size range
…Expect CE Mark Trials on Two New Valve Platforms in 2012

Edwards SAPIEN 3 Valve

Edwards CENTERA Valve

Balloon Expandable

Self Expanding

Commercial Device* IDE Trial Enrolling

SAPIEN THV SAPIEN XT THV

U.S. Offering

O.U.S. Commercial Offering

SAPIEN XT THV

OUS Offering

* The Edwards SAPIEN XT valve, the Edwards SAPIEN valve with the Ascendra delivery system, the Edwards SAPIEN 3 valve and the Edwards CENTERA valve are investigational devices and are not available for commercial sale in the U.S.
SAPIEN 3 Advances

Ultra Low-Profile Balloon Expandable Platform

- Designed to further **reduce PV leaks**
- Lower profile valve delivered through a **14 Fr eSheath**
- Discrete valve that anchors in the **annulus**
- Treated bovine pericardial tissue **leaflets**
- Dramatically reduced profile for the **transapical approach**
CENTERA is Edwards’ First Self-Expanding Transcatheter Valve

Ultra Low-Profile Self Expanding Platform

- **Motorized delivery system** for stable deployment and single operator use
- **Repositionable**
- Delivered through a 14 Fr eSheath
- Discrete valve that anchors in the annulus
- Treated bovine pericardial tissue leaflets
- Transfemoral and subclavian approach

First-in-Man Experience Completed
The Lotus™ Valve System
Product Details and Design Goals

Device Delivery:
- Nitinol valve frame
- No balloon inflation or rapid pacing of heart for insertion
- Introducer sheath same outer diameter as commercially available 18F sheaths

Device Positioning:
- Self-centering
- Controlled positioning for accurate placement
- Fully retrievable (before release)
- Valve begins functioning early in deployment process

Device Implant:
- Bovine pericardium tri-leaflet aortic valve
- Adaptive™ Seal conforms to irregular surfaces of native anatomy to minimize perivalvular leaks

The Lotus Valve System is an investigational device, not available for sale.
Sadra Lotus™ Valve Concept

- Braided nitinol stent structure
- Radial expansion as it shortens
 - Enables a more flexible delivery system
 - Enables device repositioning or retrieval
 - Provides significant radial strength
The Lotus™ Valve System

Components and Function

Nitinol Frame
designed for retrieval and repositioning

Locking Mechanism

Bovine Pericardium
Long-Term Proven material

Adaptive Seal
Designed to conform to irregular anatomical surfaces, and to minimize perivalvular leaks
REPRISE Clinical Program

REPRISE I Feasibility

Objective

To assess the acute safety and performance of the Lotus™ Valve System for transcatheater aortic valve replacement (TAVR) in symptomatic patients with calcified stenotic aortic valves who are considered high risk for surgical valve replacement.

Primary Endpoint

Clinical procedural success: Device Success without inhospital MACCE thru discharge or 7d post-procedure

Valve size

23 mm

REPRISE I Study Sites in Australia

- Principal Investigator: Prof. Ian Meredith
- Prof. Ian Meredith, Monash Heart Center
- Prof. Rob Whitbourn, St. Vincent Hospital
- Prof. Stephen Worthley, Royal Adelaide Hospital

The Lotus Valve System is an investigational device, not available for sale. See glossary.
REPRISE Clinical Program

Objectives
To evaluate the safety and performance of the Lotus™ Valve System for transcatheter aortic valve replacement (TAVR) in symptomatic subjects with severe calcific aortic stenosis who are considered high risk for surgical valve replacement.

| Primary Endpoint | Device Performance Endpoint: Mean aortic valve pressure gradient at 30d
Safety Endpoint: All-cause mortality at 30d |
|------------------|--|
| Valve size | 23 and 27 mm
N | 120 patients in Australia, France, Germany, UK |

Principal Investigator: Prof. Ian Meredith

- Prof. Ian Meredith, Monash Heart Center
- Prof. Rob Whitbourn, St. Vincent Hospital
- Prof. Stephen Worthley, Royal Adelaide Hospital
- Prof. Thierry Lefevre, Institut Jacques Cartier
- Dr. Didier Tchetche, Clinique Pasteur
- Prof. Gilles Rioufol, Univ. De Lyon
- Prof. Didier Carrie, CHU de Rangueil
- Dr. Simon Redwood, St. Thomas Hospital
- Dr. Ganesh Manoharan, Royal Victoria, Belfast
- Dr. Daniel Blackman, Spire Leeds Hospital
- Dr. David Hildick-Smith, Royal Sussex
- Prof. Peter Boekstegers, Helios Klinikum, Siegburg
- Prof. Rudiger Lange, German Heart Center, Munich
- Prof. Friedrich Mohr, Herzzentrum, Leipzig

The Lotus Valve System is an investigational device, not available for sale. See glossary.
Primary Endpoint - Discharge/7 Days

REPRISE I (N=11)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Procedural Success (per patient)</td>
<td>9/11</td>
</tr>
<tr>
<td>Device Success</td>
<td>10/11</td>
</tr>
<tr>
<td>Successful access, delivery, deployment, valve positioning, delivery system retrieval</td>
<td>11/11</td>
</tr>
<tr>
<td>Intended valve performance<sup>a</sup></td>
<td>10/11</td>
</tr>
<tr>
<td>One valve implanted</td>
<td>11/11</td>
</tr>
<tr>
<td>No MACCE through discharge or 7 days<sup>b</sup></td>
<td>10/11</td>
</tr>
</tbody>
</table>

Presented by Ian Meredith, MBBS, PhD. at EuroPCR 2012

^a AVA > 1.0 cm² plus either a mean aortic valve gradient < 20 mmHg or peak velocity < 3 m/sec, without moderate/severe prosthetic valve aortic regurgitation

^b Major adverse cardiovascular or cerebrovascular events including all-cause mortality, peri-procedural MI ≤ 72 hours, major stroke, urgent/emergent conversion to surgery or repeat procedure for valve-related dysfunction

Values are n/N
Aortic Regurgitation
Discharge Transthoracic Echocardiography

No Moderate / Severe AR by Independent Adjudication

N = 11
Presented by Ian Meredith, MBBS, PhD. at EuroPCR 2012
Mean Aortic Gradient by Patient

REPRISE I (N=11)

Presented by Ian Meredith, MBBS. PhD at EuroPCR 2012
VARC=Valve Academic Research Consortium; J Am Coll Cardiol 2011, 57:253
Aortic Valve Area by Patient
REPRISE I (N=11)

Presented by Ian Meredith, MBBS, PhD, at EuroPCR 2012
“Discharge” is defined as discharge or 7 days post-procedure, whichever comes first
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-hospital MACCE</td>
<td>1/11</td>
</tr>
<tr>
<td>All cause mortality</td>
<td>0/11</td>
</tr>
<tr>
<td>Peri-procedural MI (≤72 hours)</td>
<td>0/11</td>
</tr>
<tr>
<td>Major stroke<sup>a</sup></td>
<td>1/11</td>
</tr>
<tr>
<td>Urgent/emergent conversion to surgery or repeat procedure for valve-related dysfunction</td>
<td>0/11</td>
</tr>
</tbody>
</table>

Presented by Ian Meredith, MBBS, PhD, at EuroPCR 2012

^a Preliminary adjudication is major stroke; final adjudication per VARC will occur at 90 days

“Discharge” is defined as discharge or 7 days post-procedure, whichever comes first. MACCE = major adverse cardiovascular and cerebrovascular events; MI = myocardial infarction
Symetis ACURATE TF™ and TA™ Bioprosthesis

- Porcine pericardium
- Self-expanding nitinol stent
- Stent covered inside and out with double porcine pericardium skirt
ACURATE™ Highlights

• Trans Apical:
 - FIM (n=40) 6M results @ EACTS 2011
 - Pilot (n=50) 30D results @ TCT 2011
 - FIM (n=40) 1Y results @ AHA 2011
 - Pivotal (n=150) enrollment start Q4 2011
 - SAVI post-market registry (n=250) with commercial implants
 - Received CE Certification in November 2011 for commercial use

• Trans Femoral:
 - FIM (n=20) enrollment start Q1 2012 (Brazil/Germany/France)
 - Pilot (n=50) enrollment start Q3 2012
ACURATE TF™ 3-Step Implant

Initial Alignment

1. Upper Crown & Gentle Push

2. Stabilization Arches

3. Full Release
ACURATE TA™ Bioprosthesis

- Treats native annuli from 21mm to 27mm
- Repositionable, self-aligning
- Composed of:
 - Biologic porcine tissue valve for long term durability
 - Self-expandable nitinol stent = form fit
 - PET skirt for ↓ PV leak
First Human Use (FHU)

- 3 patients treated in Sao Paulo by Dr. Alex Abizaid
- Feasibility proven – 3 successful implants
- 3 patients discharged home and well at 5 months
- No reported MACCE to date and follow-up ongoing
- Easy catheter tracking and implantation (tactile feedback)
- No procedure difficulties
- Demonstrates good hemodynamics, low leak
- Green light to start TF FIM!
FHU 001

- Good initial positioning
- Easy upper crown positioning
- Controlled deployment
- Minimal leak
- Low gradient
- First patient, first success
ACURATE TF™ FHU Outcomes

<table>
<thead>
<tr>
<th>Subject</th>
<th>Assessment</th>
<th>Screening TTE</th>
<th>30D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 001
Male, 78 y/o
STS Score: <6
NYHA Class III
AAn: 24.0 cm²</td>
<td>Mean Gradient</td>
<td>57 mmHg</td>
<td>7.8 mmHg</td>
</tr>
<tr>
<td></td>
<td>AVA/EOA</td>
<td>0.7 cm²</td>
<td>1.9 cm²</td>
</tr>
<tr>
<td></td>
<td>Peak jet</td>
<td>4.9 m/s</td>
<td>2.1 m/s</td>
</tr>
<tr>
<td></td>
<td>PVL / IVL</td>
<td>n/a</td>
<td>+1 / 0</td>
</tr>
<tr>
<td>Patient 002
Female, 72 y/o
STS Score: <6
NYHA Class III
AAn: 22.5 cm²</td>
<td>Mean Gradient</td>
<td>48 mmHg</td>
<td>11.1 mmHg</td>
</tr>
<tr>
<td></td>
<td>AVA/EOA</td>
<td>0.8 cm²</td>
<td>1.8 cm²</td>
</tr>
<tr>
<td></td>
<td>Peak jet</td>
<td>4.3 m/s</td>
<td>2.2 m/s</td>
</tr>
<tr>
<td></td>
<td>PVL / IVL</td>
<td>n/a</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Patient 003
Female, 92 y/o
STS Score: ≥6
NYHA Class III
AAn: 22.4 cm²</td>
<td>Mean Gradient</td>
<td>65 mmHg</td>
<td>9.6 mmHg</td>
</tr>
<tr>
<td></td>
<td>AVA/EOA</td>
<td>0.4 cm²</td>
<td>1.9 cm²</td>
</tr>
<tr>
<td></td>
<td>Peak jet</td>
<td>5.2 m/s</td>
<td>2.4 m/s</td>
</tr>
<tr>
<td></td>
<td>PVL / IVL</td>
<td>n/a</td>
<td>+1 / 0</td>
</tr>
</tbody>
</table>
TF FIM Design

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective, multicenter, non-randomized, open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Feasibility</td>
</tr>
<tr>
<td>Enrollment Number</td>
<td>20 patients</td>
</tr>
<tr>
<td>Follow-up Visits</td>
<td>Post-procedure, 7 & 30D and 12M</td>
</tr>
<tr>
<td>TeleCheck</td>
<td>6M and 2, 3, 4 & 5Y</td>
</tr>
<tr>
<td>Clinical Sites</td>
<td>(1) BR, (3) DE, (1) FR</td>
</tr>
<tr>
<td>Study Start</td>
<td>FPI in MAY 2012</td>
</tr>
<tr>
<td>Primary Endpoint</td>
<td>ACM @ 30D</td>
</tr>
<tr>
<td>Secondary Endpoints</td>
<td>1. MACCE @ 30D and 12M</td>
</tr>
<tr>
<td></td>
<td>2. NYHA Class @ 30D and 12M</td>
</tr>
<tr>
<td></td>
<td>3. Procedural success post-implant</td>
</tr>
<tr>
<td></td>
<td>4. Device success @ 30D and 12M</td>
</tr>
</tbody>
</table>
TF FIM Enrollment

<table>
<thead>
<tr>
<th>SITE</th>
<th>MAY</th>
<th>JUN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Nauheim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamburg</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Bonn</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Sao Paulo</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>
ACURATE TF™ Take Away

- Successful FHU in Brazil (n=3)
- Currently enrolling in TF FIM trial (n=20)
- 9 patients implanted in Brazil and Germany to date
- TF Pilot (n=50) in Q4
- TF FIM + TF Pilot = TF 70
- TF 70 = CE Mark in 2013
FIM Gradient

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>30D</th>
<th>6-Month</th>
<th>12-Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Grad</td>
<td>51.9</td>
<td>12.3</td>
<td>11.9</td>
<td>11.3</td>
</tr>
</tbody>
</table>
FIM EOA

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>30D</th>
<th>6-Month</th>
<th>12-Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOA</td>
<td>0.6</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
</tr>
</tbody>
</table>
FIM PV Leak

12M FU: 96.7% of patients $\leq +1$ PVL
Only 1 patient $\geq +2$ PVL
12M FU: 90% of patients with improvement from baseline
Direct Flow Medical

2 sizes matching valvuloplasty balloons

22F Design

18F Design
Conformable cuff design and precise positioning maximizes sealing to prevent PV leaks
Direct Flow Valve

Designed for Patient Safety
• “Surgical” valve design
• Repositionable & Removable
• Minimizes PV Leaks and AI
• Deliverability/Profile
• Immediately competent
• Durability

Unique design allows assessment of patient outcomes prior to final device deployment
2 Year Imaging Follow Up
Bijuklic et al, Circulation Cardiovasc Interv, Nov 2011

Investigational device not for sale in or outside the United States
2 Year Data *(EU Feasibility Trial)*

NYHA Functional Class

- Baseline
- 30 D
- 180 D
- 365 D
- 730 D

All Patients
NYHA Class I or II

- Class I
- Class II
- Class III
- Class IV

Investigational device not for sale in or outside the United States
2 Year Data (EU Feasibility Trial)

Aortic Insufficiency

* As measured by TTE

Investigational device not for sale in or outside the United States
2 Year Data *(EU Feasibility Trial)*

Kaplan Meier Curve - Survival

- 30 D: 0.91
- 180 D: 0.86
- 365 D: 0.76
- 2 Year: 0.71

2 Year Survival 71%

Investigational device not for sale in or outside the United States
St Jude Medical (Portico Transcatheter Heart Valve)

St. Jude Medical TAVI System:
Next Generation Design Features

Unique self expanding stent design provides the ability to...
- Re-sheath*
- Reposition
- Retrieve*
...the valve at implant site

Bovine and porcine pericardial valve with Anti-calcification technology**

Open stent cell design allows access to coronaries and low crimp profile

Tissue cuff designed to minimize PV leak

Low placement of leaflets/cuff within the stent frame allows for minimal protrusion into the LVOT

Anti-calcification technology is used on SJM Epic™ and Trifecta™ surgical aortic valves

* Until fully deployed
** There is no clinical data currently available that evaluates the long-term impact of anti-calcification tissue treatment in humans
*** Trifecta is an investigational device in the US and is not commercially available.

First Human Implant June 7th, 2011
St. Jude Medical TAVI System: Next Generation Design Features

- **Nitinol** self expanding stent
- Open stent cell allows access to coronaries and low crimp profile
- **Bovine and porcine** pericardial valve (Linx™ anticalcification technology*)
- Low placement of leaflets/cuff within stent frame allows for minimal protrusion into the LVOT

*There is no clinical data currently available that evaluates the long-term impact of anticalcification tissue treatment in humans.
St Jude Medical TAVI System

Program Status

- Pre-IDE meetings in 2010
- First-in-man study
- European trial
- U.S. IDE submission
- CE Mark
Jena Valve

- Self-expanding nitinol stent with flexible stent posts
- Porcine root valve
- Sizes 23, 25, 27
- 32F introducer sheath for transapical access
Paravalvular Regurgitation

<table>
<thead>
<tr>
<th></th>
<th>Post procedure</th>
<th>3 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Trace</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minimal (Grade 1)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Moderate (Grade 2)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

30 d safety outcomes

<table>
<thead>
<tr>
<th>Event</th>
<th>FIM pts (N=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cause death (30 d)</td>
<td>0</td>
</tr>
<tr>
<td>Stroke</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0</td>
</tr>
<tr>
<td>Emergent cardiac surgery</td>
<td>1</td>
</tr>
<tr>
<td>Onset of AV block</td>
<td>0</td>
</tr>
</tbody>
</table>
Heart Leaflet Technology