Stat-of-the-Art in High Resolution IVUS

Akiko Maehara, MD

Cardiovascular Research Foundation/
Columbia University Medical Center
New York City, NY
กto Columbia University Medical Center

Conflict of Interest Disclosure

- Akiko Maehara
- Personal: Consultant for ACIST, Boston Scientific Corporation
- Cardiovascular Research Foundation: Boston Scientific Corporation

Five Companies Are Working on Next Generation IVUS Systems

- ACIST, 60MHz (purchased SVMI has been working on next generation IVUS since 2007)
- InfraReDx, 50MHz
- Boston Scientific, 60MHz
- Volcano, FACT
- OCT Medical Imaging Inc, 60MHz

Available in US
$\left\{\begin{array}{c}\text { Under } \\ \text { development }\end{array}\right.$

Intravascular Imaging System Comparison

- Angular resolution=1.22 \times wave length/diameter of lens
- Frequency= speed of wave / wave length

Feature	ACIST HDi / Kodama	Boston Scientific	Volcano FACT	InfraReDx	St Jude Medical OCT
Frequency or Wavelength	60 MHz	60 MHz	Not available	50 MHz	$1.3 \mu \mathrm{~m}$
Nature of the Energy		Ultrasound			Optical
Axial Resolution	$40 \mu \mathrm{~m}$	$22 \mu \mathrm{~m}$	$<50 \mu \mathrm{~m}$	$20 \mu \mathrm{~m}$	$15 \mu \mathrm{~m}$
Lateral Resolution	$90 \mu \mathrm{~m}$	$50-140 \mu \mathrm{~m}$	$100-200 \mu \mathrm{~m}$	$<200 \mu \mathrm{~m}$	$40 \mu \mathrm{~m}$
Soft Tissue Penetration	$>2.5 \mathrm{~mm}$	$>3.5 \mathrm{~mm}$			

Frequency and Penetration

Penetration (mm)

Power Spectrum of Wave

Boston Scientific: HD-IVUS and Bioresorbable Vascular Scaffolds

Pro/iCross 40 MHz 43 micron axial

OptiCross 40 MHz 38 micron axial

Next Gen IVUS 60 MHz
22 micron axial

Improving IVUS Resolution without Compromising Penetration

Boston Scientific: 55MHz IVUS in Animal Normal Coronary Artery

InfraReDx: 50MHz IVUS in Human Plaque rupture

Q'อ Columbia University Medical Center

InfraReDx: 50MHz IVUS in Human

A't Columbia University Medical Center

Volcano: FACT (Focused Acoustic Computed Tomography)

FACT ultrasound transducer intended to generate a "cleaner" signal than traditional piezoelectricity, near field resolution close to OCT.

Cadaver Image without blood

Animal Image with stent

ACIST 60MHz IVUS

©f Columbia University Medical Center

Three Layers Appearance

Difference between 60 and 40 MHz

60 MHz

40MHz

तt? Columbia University Medical Center

Thrombus

60 MHz

40MHz

Columata University
Medical Center
${ }_{7}$ NewYork-Presbyterian

High Speed Pullback ($10 \mathrm{~mm} / \mathrm{sec}$) with Flushing

Comparison with vs without Flush

High Speed Pullback with Flushing

Normal Pullback

Penetration

Soft Tissue Penetration

Blood Penetration

Phase Cancellation Signal Processing Artifact

RF averaging across multiple A-lines over a period of around 25 microseconds. If during this averaging period, the target moves slightly, this slight position change results in a 180 degree phase shift of the RF signal so that cancellation occurs and the black region is present.

Columata University Medical Center
${ }_{\square}$ NewYork-Presbyterian

Pre-PCI

Post-Wiring

GCRF!

Neointimal Attenuated Plaque

Q'อ Columaia University Medical Center

OCT/IVUS Combined Catheter

Courtesy for Pranav Patel \& Zhongping Chen University of California, Irvine; Ram Ramalingam OCT Medical Imaging Inc.
ob Convman Unvinsitr

What we are looking for more?

- Intraplaque Hemorrhage
- Thrombus
- Macrophage
- Bioabsorbable scaffold, stent fracture
- Edge dissection

Intraplaque Hemorrhage

Macrophage?

Soest G et al, JACC Img 2011; 4:810-3.

Summary

1. New generation of high definition (frequency) of IVUS will provide better resolution (close to OCT) with clinically enough penetration (vessel size evaluation is possible).
2. Clinically useful easier diagnosis such as under-expansion and dissection will be expected.
3. Understanding of plaque vulnerability (intraplaque hemorrhage, macrophage, thrombus) would be promising.
GCRF
