Stat-of-the-Art in High Resolution IVUS

Akiko Maehara, MD

Cardiovascular Research Foundation/ Columbia University Medical Center New York City, NY

Conflict of Interest Disclosure

- Akiko Maehara
 - Personal: Consultant for ACIST, Boston Scientific Corporation
 - Cardiovascular Research Foundation: Boston Scientific Corporation

Five Companies Are Working on Next Generation IVUS Systems

- ACIST, 60MHz (purchased SVMI has been working on next generation IVUS since 2007)
- InfraReDx, 50MHz
- Boston Scientific, 60MHz
- Volcano, FACT
- OCT Medical Imaging Inc, 60MHz

Available in

Intravascular Imaging System Comparison

- Angular resolution=1.22 × wave length/diameter of lens
- Frequency= speed of wave / wave length

Feature	ACIST HDi / Kodama	Boston Scientific	Volcano FACT	InfraReDx	St Jude Medical OCT
Frequency or Wavelength	60 MHz	60 MHz	Not available	50 MHz	1.3 µm
Nature of the Energy	Ultrasound				Optical
Axial Resolution	40 µm	22 µm	<50 µm	20 µm	15 µm
Lateral Resolution	90 µm	50-140 µm	100-200 µm	<200 μm	40 µm
Soft Tissue Penetration	> 2.5 mm	>3.5 mm			0.8-1.2 mm*
Blood Penetration	> 3.4 mm	>4.0 mm			≤ 1.2 mm
Pullback Speed (mm/s)	0.5, 1.0, 2.5, 5.0, 10	0.5,1.0		0.5	20
Pullback Length (mm)	130	100		150	75

* Soft Tissue Penetration with contrast injection to achieve blood clearing.

OCRF CARDIOVASCULAR At the heart of innovation

olumbia University Iedical Center

- NewYork-Presbyterian

Frequency and Penetration

Power Spectrum of Wave

Boston Scientific: HD-IVUS and Bioresorbable Vascular Scaffolds

Improving IVUS Resolution without Compromising Penetration

COLUMBIA UNIVERSITY MEDICAL CENTER

- NewYork-Presbyterian

Boston Scientific: 55MHz IVUS in Animal Normal Coronary Artery

Columbia University Medical Center

InfraReDx: 50MHz IVUS in Human Plaque rupture

proximal

distal

InfraReDx: 50MHz IVUS in Human

Volcano: FACT (Focused Acoustic Computed Tomography)

FACT ultrasound transducer intended to generate a "cleaner" signal than traditional piezoelectricity, near field resolution close to OCT.

Cadaver Image without blood

Animal Image with stent

ACIST 60MHz IVUS

Three Layers Appearance

Difference between 60 and 40 MHz

60MHz

40MHz

Thrombus

High Speed Pullback (10mm/sec) with Flushing

GCRF CARDIOVASCULAR RESEARCH FOUNDATION At the heats of innovation Columbia University Medical Center

Comparison with vs without Flush High Speed Pullback with Flushing

Normal Pullback

CRF CARDIOVASCULAR RESEARCH FOUNDAT At the heart of innovation Medical Center

Penetration

Soft Tissue Penetration

Blood Penetration

5mr

SITY

Phase Cancellation Signal Processing Artifact

RF averaging across multiple A-lines over a period of around 25 microseconds. If during this averaging period, the target moves slightly, this slight position change results in a 180 degree phase shift of the RF signal so that cancellation occurs and the black region is present.

Pre-PCI

Post-Wiring

COLUMBIA UNIVERSITY MEDICAL CENTER York-Presbyterian

OCT/IVUS Combined Catheter

Courtesy for Pranav Patel & Zhongping Chen University of California, Irvine; Ram Ramalingam OCT Medical Imaging Inc.

COLUMBIA UNIVERSITY MEDICAL CENTER

- New York-Presbyterian

What we are looking for more?

- Intraplaque Hemorrhage
- Thrombus
- Macrophage
- Bioabsorbable scaffold, stent fracture
- Edge dissection

Intraplaque Hemorrhage

Macrophage?

Soest G et al, JACC Img 2011; 4:810-3.

Summary

- 1. New generation of high definition (frequency) of IVUS will provide better resolution (close to OCT) with clinically enough penetration (vessel size evaluation is possible).
- 2. Clinically useful easier diagnosis such as under-expansion and dissection will be expected.
- 3. Understanding of plaque vulnerability (intraplaque hemorrhage, macrophage, thrombus) would be promising.

