TCTAP 2015 Fellowship Course

Sketch for FFR

: Basics, Artifacts, Pitfalls, and Grey Zones

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

Which is a significant stenosis?

Anatomy vs. Ischemia

- Stenosis severity by CT, angiography, IVUS, OCT
- Extent of the perfusion territory
- Presence of myocardial infarction
- Myocardial blood flow including collaterals
- Microvascular function

-> Physiologic or functional evaluation

Fractional Flow Reserve (FFR)

SNUH Seoul National University Hospital Cardiovascular Center

Fractional Flow Reserve

Which is a significant stenosis?

SNUH Seoul National University Hospital Cardiovascular Center

FFR vs. Myocardial ischemia

Overall results for FFRmyo	Percentage
Sensitivity	88 %
Specificity	100 %
Pos. Pred. Value	100 %
Neg. Pred.Value	88 %
Accuracy	93 %

All pts with FFR below 0.75 (21 pts) had inducible ischemia whereas in the majority, 87.5 % (21/24 pts) of patients with FFR higher than 0.75 ischemia could not be induced.

FFR for "Presence of ischemia"

Author	Number	Stress Test	BCV	Accuracy
Pijls et al.	60	Ex-ECG	0.74	97
De Bruyne et al.	60	Ex-ECG/SPECT	0.72	85
Pijls et al.	45	Ex-ECG/SPECT/DSE	0.75	93
Bartunek et al.	37	DSE	0.68	90
Abe et al.	46	SPECT	0.75	91
Chamuleau et al.	127	SPECT	0.74	77
Caymaz et al.	40	SPECT	0.76	95
Jimenez-Navarro et al.	21	DSE	0.75	90
Usui et al.	167	SPECT	0.75	79
Yanagisawa et al.	167	SPECT	0.75	76
Meuwissen et al.	151	SPECT	0.74	85
DeBruyne et al.	57	MIBI-SPECT post-MI	0.78	85
Samady et al.	48	MIBI-SPECT post-MI	0.78	85

Clinical Investigation and Reports

Coronary Pressure Measurement After Stenting Predicts

Adverse Events at Follow-Up

A Multicenter Registry

Nico H.J. Pijls, MD, PhD; Volker Klauss, MD; Uwe Siebert, MPh, MSc; Eric Powers, MD; Kenji Takazawa, MD; William F. Fearon, MD; Javier Escaned, MD; Yukio Tsurumi, MD; Takashi Akasaka, MD; Habib Samady, MD; Bernard De Bruyne, MD, PhD; for the Fractional Flow Reserve (FFR) Post-Stent Registry Investigators

Reliability of Pressure-Derived Myocardial Fractional Flow Reserve in Assessing Coronary Artery Stenosis in Patients With Previous Myocardial Infarction

Yasuhiro Usui, MD, Taishiro Chikamori, MD, Hidefumi Yanagisawa, MD, Takayuki Morishima, MD, Satoshi Hida, MD, Nobuhiro Tanaka, MD, Kenji Takazawa, MD, and Akira Yamashina, MD

Journal of the American College of Castiology	Vol. 46, No. 4, 2005
© 2005 by the American College of Cardiology Foundation	185N 0735-1097/05/\$30.00
Published by Elsevier Inc.	doi:10.1016/j.jacr.2005/04.054

Physiologic Assessment of Jailed Side Branch Lesions Using Fractional Flow Reserve

Bon-Kwon Koo, MD, PHD,* Hyun-Jai Kang, MD, PHD,* Tae-Jin Youn, MD, PHD,* In-Ho Chae, MD, PHD,† Dong-Joo Choi, MD, PHD,† Hyo-Soo Kim, MD, PHD,* Dae-Won Sohn, MD, PHD,* Byung-Hee Oh, MD, PHD, FACC,* Myoung-Mook Lee, MD, PHD, FACC,* Young-Bae Park, MD, PHD,* Yun-Shik Choi, MD, PHD * Seung-Jae Tabk MD, PHD±

 Second, Secongnum, Gyconggi Physiological evaluation of the provisional

 fer
 side-branch intervention strategy for bifurcation

 lesions using fractional flow reserve

Bon-Kwon Koo¹, Kyung-Woo Park¹, Hyun-Jae Kang¹, Young-Seok Cho², Woo-Young Chung², Tae-Jin Youn², In-Ho Chae², Dong-Ju Choi², Seung-Jae Tahk³, Byung-Hee Oh¹, Young-Bae Park¹ and Hyo-Soo Kim¹⁺

Torease of Cardings, Department of Name (Helston, Smith Network), Caling of Pedicin, Cardiovascular Center and Cardiovascular Research transmis, Net-Astimul Interestin Proteint, Stepporting 23, prop. or 2019; RANDON of Konst. "Network Cardiovascular Center and Cardiovascular University Helston, University Helston, Cardiovascular Cardiovascular Center and C

Resoluti 31 Alexis 2017 review 8 (movie 2005 account 17 (movy 3006 online partiti-chanical are 28 February 3006

Journil of the American College of Cardiology © 2005 by the American College of Cardiology Foundation Published by Elsevier Iac. Vol. 44, No. 185N 0735-1097468. doi:10.1016/j.jacz.2005

Interventional Cardio

Long-Term Clinical Outcome After Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Multivessel Disease

Alexandre Berger, MD,* Kees-Joost Botman, MD,* Philip A. MacCarthy, MD, PHD, MRCP,* William Wijns, MD, PHD,* Jozef Bartunek, MD, PHD,* Guy R. Heyndrickx, MD, PHD,* Nico H. J. Pijls, MD, PHD,* Bernard De Broyne, MD, PHD* Adst, Belgium; and Eindhoven, the Netherlandh

Clinical Significance of Fractional Flow Reserve for Evaluation of Functional Lesion Severity in <u>Stent Restenosis</u> and Native Coronary Arteries*

Stefan Krüger, MD; Karl-Christian Koch, MD; Ira Kaumanns, MD; Marc W. Merx, MD; Peter Hanrath, MD; and Rainer Hoffmann, MD

Interventional Cardiology

Clinical outcome in patients with intermediate Yun-Shik Ch equivocal left main coronary artery disease after deferral of surgical revascularization on the basis of fractional flow reserve measurements

Michael Lindstaedt, MD.^a Aydan Yazar, MD.^a Alfried Germing, MD.^a Markus K. Fritz, MD.^b Tim Holland-Letz, MSC.^c Andreas Mügge, MD.^a and Waldemar Bojara, MD^a Bochum, Germany

FAME - I

FFR vs. Angio-guided DES for multivessel disesase

Tonino, NEJM 2009

FAME study: Cost-effectiveness

SNUH Seoul National University Hospital Cardiovascular Center Fearon, et al. Circulation 2010

FAME - II

FFR-guided DES vs. Medical tx for ischemic lesion

Primary outcomes: all death, nonfatal MI and urgent revascularization

SNUH Seoul National University Hospital Cardiovascular Center

FFR has become the gold standard invasive method to detect the ischemia-related lesion in a catheterization laboratory.....

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

	Class ^a	Level⁵
FFR-guided PCI is recommended for detection of ischaemia-related lesion(s) when objective evidence of vessel-related ischaemia is not available.	I	A
DES ^d are recommended for reduction of restenosis/re-occlusion, if no contraindication to extended DAPT.	I	A
Distal embolic protection is recommended during PCI of SVG disease to avoid distal embolization of debris and prevent MI		в

۵

ASP.

ŝ

20°

FFR market in EU

SNUH Seoul National University Hospital Cardiovascular Center 2070

Checklists for possible pitfall/artifact

- Infusion pump or connection site: IV infusion or IC bolus
- Adequate dosage of hyperemic agent?
- Introducer in place?
- Check the cursor location
- Check the shape of pressure curves
- Guide catheter problem
 - Side-holes, Flush
 - Disengage during recording/pullback tracing
- Drift

Re-equalise or change a wire

Spasm/Accordion effects

Nitro before measurement

Don't equalise with an "INTRODUCER" in place

5 Fr guiding catheter, radial approach

Hyperemia: IV adenosine infusion

"FLUSH" the guiding catheter

Check the shape of "PRESSURE CURVE"

SNUH Seoul National University Hospital Cardiovascular Center

Artificial gradient due to "DRIFT"

SNUH Seoul National University Hospital Cardiovascular Center

Aware of "Whipping artefact"

PW sensor hits the coronary wall \rightarrow Move the PW sensor

Aware of "Accordion effect"

SNUH Seoul National University Hospital Cardiovascular Center

Sketch for FFR

• FFR is the gold standard to define the functional significance of

coronary stenosis in a catheterization laboratory.

• FFR-guided PCI is feasible and effective and reduces unnecessary

revascularization and related complications.

• However, adequate knowledge on coronary physiology and potential

pitfalls of FFR is needed to properly use FFR in daily practice.