TCTAP Workshops LM & Multi-Vessel Diseases

DM and Triple Vessel Disease; Old Evidence and Next New Trials? DEFINE-DM Trial

Duk-Woo Park, MD

Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea

Disclosure

 Institutional grant/research funding to CardioVascular Research Foundation (CVRF, Korea) and/or Asan Medical Center from Abbott, Boston Scientific, Medtronics, Daiichi-Sankyo, Edwards Lifescience, HK InnoN, Daewoong Pharm, and ChongKunDang Pharm.

Diabetes and CAD

- Diabetes is a common comorbidity among patients with coronary artery disease (CAD).
- Diabetic patients have a more aggressive form of atherosclerosis and more extensive coronary artery disease.
 Circulation 2013;1

Circulation 2013;128:1675-1685 Circulation 2015;132:923-931

 Diabetes is a major determinant of adverse clinical events after myocardial revascularization of PCI or CABG.
 The Lancet Diabetes & Endocrinology 2013;1:317-328 JACC 2019;73:1629-1632

 Patients with diabetes have higher risk of ischemic cardiovascular events and mortality than those without diabetes.
 Circulation 2021;144:1380-

Circulation 2021;144:1380-95 Circulation 2019;139:2742-53

Old Evidence

PCI vs. CABG in DM with Multivessel CAD

SYNTAX trial DM subgroup analysis

1,800 patients with LM and/or 3VD, 5-year follow-up 452 patients with DM

Composite of Death, MI, Stroke, or **Repeat Revascularization** PCI CABG 70% P < 0.001 60% HR 1.81 46.5% PCI (95% CI 1.31-2.48) 50% 40% 30% 20% 29.0% CABG 10% 09 900 1050 1200 1350 1500 1650 1800 Days since allocation

Composite of Death, MI, or Stroke

70%

608

50%

408

308

20%

108

Repeat revascularization

Eur J Cardiothorac Surg. 2013;43(5):1006-1013

10-Yr Follow-up of the BEST Trial

880 patients with Multivessel CAD, median follow-up of 11.8 years 438 in PCI, 442 in CABG

28th TCTAP

Ahn JM, DY Kang, DW Park, SJ Park et al. Circulation. 2022;146:1581–1590

10-Yr Extended Follow-up of the BEST Trial

DM subgroup analysis

28th TCTAP

Ahn JM, DY Kang, DW Park, SJ Park et al. Circulation. 2022;146:1581–1590

Extended follow-up of the BEST Trial

DM subgroup analysis

Ahn JM, DY Kang, DW Park, SJ Park et al. Circulation. 2022;146:1581–1590

Landmark RCTs Specifically Targeting Patients with DM and multivessel CAD:

FREEDOM Trial BARI-2D Trial

FREEDOM trial

1,900 patients with DM and Multivessel CAD, 5-year follow-up 953 in PCI , 947 in CABG

N Engl J Med 2012;367:2375-84

FREEDOM Follow-On Study

1,900 patients with DM and Multivessel CAD Median follow-up of 7.5 years (up to 13.2 years)

Free from All-Cause Death

All-cause mortality

- PCI 24.3%
- CABG 18.3%
 - (HR 1.36; P = 0.01)

J Am Coll Cardiol. 2019;73(6):629-38

BARI 2D trial

2,368 patients with type 2 DM and CAD, mean follow-up of 5.3 years 763 in CABG stratum (385 OMT vs. 378 CABG), 1605 in PCI stratum (807 OMT vs. 798 PCI)

28th TCTAP

N Engl J Med 2009;360:2503-15

BARI 2D trial

2,368 patients with type 2 DM and CAD, mean follow-up of 5.3 years 763 in CABG stratum (385 OMT vs. 378 CABG), 1605 in PCI stratum (807 OMT vs. 798 PCI)

N Engl J Med 2009;360:2503-15

Contemporary Revascularization Guidelines

18 ESC Guideline	CABG		PCI	
Three-vessel CAD with diabetes mellitus				
Three-vessel disease with low SYNTAX score 0–22. ^{102,105,121,123,124,135,150–157}	1	А	IIb	А
Three-vessel disease with intermediate or high SYNTAX score (>22). ^{c 102,105,121,123,124,135,150–157}	I.	Α	ш	А

2021 ACC/AHA/SCAI Guideline

In patients with diabetes and multivessel CAD with involvement of LAD, who are appropriate candidates for CABG, CABG is recommended in preference to PCI to <u>reduce mortality and repeat</u> <u>revascularization</u>

© ESC 2018

In patients with diabetes and multivessel CAD amenable to PCI and an indication for revascularization and are poor candidates for surgery, PCI can be useful to <u>reduce long-term ischemic outcomes</u>

Limitations of Prior RCTs

- Not focus on patients with diabetes
 - SYNTAX, BEST
- Just subgroup analyses with study underpower
 - SYNTAX, BEST
- Not use current generation DES - FREEDOM, SYNTAX
- Not frequently use intracoronary imaging and physiology
 SYNTAX, FREEDOM
- Not use GDMT (e.g., SGLT-2 inhibitors or GLP-1 RA) of current practice
 - FREEDOM, BARI 2D

ASSESSMENT

INTERVENTION

Lesion Selection Guidance Optimization

For Contemporary PCI

Remarkable Advances in Diabetic Management

FAME 3 Trial

1,500 patients with 3VD

(757 in FFR-guided PCI using 2nd generation DES, 743 in CABG)

MACCE (death, MI, stroke, or repeat

No. at Risk													
PCI	757	728	721	713	707	702	697	696	693	687	678	674	670
CABG	743	709	701	698	695	693	691	686	683	682	679	679	679

Subgroup	PCI tota	CABG I no.	PCI 1-yr incid	CABG lence (%)	Adjusted Hazard Ratio (95% CI)
All patients	757	743	10.6	6.9	-
Age					
≥65 yr	434	409	9.4	8.1	
<65 yr	323	334	12.1	5.4	
Sex					
Female	141	124	11.3	13.7	
Male	616	619	10.4	5.5	
Diabetes					
No	543	529	9.4	7.0	+
Yes	214	214	13.6	6.5	
NSTE-ACS					
No	456	454	10.1	5.9	
Yes	300	287	11.3	8.4	
LVEF					
>50%	616	610	10.4	6.6	
30-50%	137	130	10.9	8.5	
Previous PCI					
No	658	637	9.3	6.8	
Yes	98	104	19.4	7.7	
SYNTAX score					
0-22	237	245	5.5	8.6	
23-32	365	343	13.7	6.1	
≥33	132	122	12.1	6.6	
					0.25 0.50 1.0 2.0 4.0 8
					PCI Better CABG Better

28th TCTAF

N Engl J Med 2022;386:128-37

FAME 3 Trial

1,500 patients with 3VD

(757 in FFR-guided PCI using 2nd generation DES, 743 in CABG)

Table 2. Angiographic and Procedural Characteristics.*								
Characteristic	PCI (N = 757)	CABG (N=743)						
PCI characteristics								
Staged procedure — no./total no. (%)	166/750 (22.1)	NA						
No. of stents	3.7±1.9	NA						
Median total length of stents placed (IQR) — mm	80 (52–116)	NA						
Intravascular imaging used — no./total no. (%)	87/744 (11.7)	NA						

However,

> Intravascular imaging only used in 11.7%>> Just subgroup analysis for patients with diabetes

What Would be Next New Trials in Patients with DM and Multivessel CAD?

DEFINE-DM Trial

Diabetes-Centered Evaluation of Revascularization Strategy of Functional and Imaging-CombiNEd State-of-the-Art Percutaneous Coronary Intervention or Coronary-Artery Bypass Grafting in Patients with Diabetes Mellitus and Multivessel Coronary Artery Disease

> Seung-Jung Park (Trial Chair) Duk-Woo Park (Trial PI) Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Trial Hypothesis

 Trial Hypothesis: advanced state-of-the-art PCI using intracoronary imaging (e.g., IVUS or OCT), intracoronary physiology (e.g., FFR or iFR), contemporary DES and GDMT with advanced cardiovascular and anti-diabetic medications (e.g., SGLT-2 inhibitors or GLP-1 RA) in patients with type 2 diabetes and multivessel CAD with LAD involvement will result in similar outcomes to CABG in a contemporary trial.

Trial Design

Diabetes-Centered Evaluation of Functional and Imaging-CombiNEd State-of-the-Art Percutaneous Coronary Intervention or Coronary-Artery Bypass Grafting in Patients with Diabetes Mellitus and Three-Vessel Coronary Artery Disease

DEFINE-DM Trial

1,200 Patients with Diabetes and Multivessel CAD with LAD Involvement Who Were Equally Eligible for PCI or CABG

Inclusion / Exclusion Criteria

Consecutive patients with diabetes and multivessel CAD (angiographic DS ≥50%) with LAD involvement who are equivalently eligible for PCI or CABG

Inclusion Criteria

- Patients at least 20 years of age
- Patients with type 2 diabetes
- Patients with significant multivessel CAD (defined as ≥50% diameter stenosis by visual estimation) of major epicardial vessel with LAD involvement equally suitable to both PCI and CABG

Exclusion Criteria

- Unprotected left main disease requiring revascularization
- Complex CAD anatomy of lesion characteristics that PCI is not suitable
- STEMI
- Cardiogenic shock or severe LV dysfunction (LVEF <30%)
- Requirement of other cardiac or non-cardiac surgical procedure
- Life expectancy < 2 years for concurrent medical condition

Study Endpoints

Primary

 The primary endpoint is a composite of of hard clinical endpoints of death from any causes, MI, or stroke at 2 years.

Secondary

- Each individual component of primary composite outcome
- Composite of death, MI, stoke, or repeat revascularization
- Stent thrombosis or symptomatic graft occlusion or stenosis
- Bleeding complications (BARC criteria)
- Periprocedural major adverse events
- Rehospitalization
- Functional class (assessed by the CCS classification)
- Angina-related quality of life index (by the Seattle Angina Questionnaire [SAQ]) or healthrelated quality of life index (by the EQ-5D)

Sample Size and Statistics

- The trial use a "noninferiority design".
- Assuming 12% of 2-year primary outcome events (death, MI, or stroke) in the CABG arm (which was based on FEEDOM trial),
- Given a clinically irrelevant hazard ratio of 1.45, a one-sided 2.5% significance level and 85% power,
- The sample size necessary is 582 patients per group (1164 for the entire study).
- To account for patients lost to follow-up (we anticipate a <5% loss to follow-up), 1,200 patients will be enrolled from 50 sites over 4 years. We assumed 4 years of enrollment time and 2 years follow-up for all patients (total time would be 6 years).

Key Message

- Old evidence suggested CABG was always better than PCI in patients with DM and multivessel CAD. This was unanimously adopted in the contemporary revascularization guidelines (CABG – class 1, PCI – class 2 or 3).
- However, there are several limitations for interpreting prior RCTs and still unmet needs in the contemporary advanced PCI era.
- We need next new trials comparing imaging/physiology-guided "state-of-the-art PCI" combined with advanced GDMT of newer antidiabetic and cardioactive drugs vs. contemporary CABG in patients with diabetes and multivessel disease.
- This will be validated from the **DEFINE-DM** trial.