CT-based Functional Coronary Imaging

Young-Hak Kim, MD, PhD

Heart Institute, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

PROMISE Trial Initial CTA vs. Functional Test

Douglas PS et al. NEJM 2015, ACC 2015

CT-based Functional Imaging

CT Perfusion (CTP)

Computational fluid dynamics simulation

FFR-CT

- ✓ Direct view of myocardium
- Pros ✓ Easy to perform
 - ✓ No special software
- Cons
- Radiation dose concern (two scans; stress + rest)
- ✓ Requirement of adenosine

Pros

- ✓ No additional scan✓ No requirement of adenosine
- ✓ Indirect view of ischemia
- Cons </ >
 Need supercomputer
 - ✓ No information on perfusion.

CT-based Functional Imaging

CT Perfusion (CTP)

- ✓ Direct view of myocardium
- Pros ✓ Easy to perform
 - No special software
- Cons
- Radiation dose concern (two scans; stress + rest)
- ✓ Requirement of adenosine

Computational fluid dynamics simulation

FFR-CT

Pros

✓ No additional scan✓ No requirement of adenosine

✓ Indirect view of ischemia
 Cons
 ✓ Need supercomputer
 ✓ No information on perfusion.

CTP Protocol in AMC

25 minutes using dual-source 126 ch. CT (Siemens)

				10 min. inte	rval	
Calcium scoring	Adenosine infusion	Stress p	perfusion	Sublingual NTG	Rest pe (C1	rfusion 'A)
Scan range	4 min. 30 sec	Retrospective ECG-gating		2 min. before	Retrospective ECG-gating	
Option 1. Static perfus 2. Dynamic perfusio		erfusion erfusion	Option 1. Retrospective mode 2. Prospective mode 3. High-pitch mode		ive mode e mode mode	

Radiation Dose

SPECT, Blankstein et al . 2009 JACC 54:1072-84

CardioVascular Research Foundation

COLLEGE MEDICINE

Visual Analysis of CTP

- Diagnostic indicator of myocardial ischemia
 - Low density lesion conforming coronary territory
 - **Persistent lesion** at systole and diastole DDx) Transient motion or beam-hardening artifact
 - <u>Wall motion abnormality (useful)</u>

Typical severe stenosis

Cine

FFR 0.44 (pre-adenosine)

Intermediate stenosis

Intermediate stenosis

Intermediate stenosis

Quantitative Analysis

0.90 0.86 0.84 0.93 0.74 0.91 0.77 0.94 0.89 0.74 1.00 1.02 1.01 0.94 1.03 1.13

Density map Syngo, Siemens

TPR map Home-made, AMC

CardioVascular Research Foundation

Early CTP Analysis in AMC

Visual Assessment Per-vessel

Medical Center

Subgroup Analysis

Quantitative Analysis

- Using customized software
 - Classification of whole myocardium into 16 segments and three layers
- Evaluation parameters
 - CT density on stress / rest CT
 - Density_{stress} / Density_{rest}, HU
 - Transmural perfusion ratio (TPR)
 - Density_{endocardial}/Density_{epicardial}
 - Myocardial perfusion reserve index (MPRI),%
 - (Density_{stress} Density_{rest})/Density_{rest} X 100

Quantitative Analysis

Parameter	AUC	Cut off	Sensitivity	Specificity
All patients (n=75)				
TPR		0.90		'1
Density _{stress} , HU	0.84 0.86 0.93 0.74			6
Density _{rest} , HU	0.94 0.89			
MPRI, %	3.74 1.00 1.01 1.03 0.94 1.13			32
Quantitative composite of TPR, Density _{stress} , or MPRI *				'5
Combination of visual and quantitative composite **	0.878	-	89	73

TPR: transmural perfusion ratio MPRI: myocardial perfusion reserve index

CTP-guided PCI

PD in LAD

No defect in LCX

iedical Center

CardioVascular Research Foundation

CT-based Functional Imaging

CT Perfusion (CTP)

Computational fluid dynamics simulation

FFR-CT

Cons

✓ Easy to perform
 ✓ No special software

 Radiation dose concern (two scans; stress + rest)

✓ Requirement of adenosine

Pros

✓ No additional scan✓ No requirement of adenosine

✓ Indirect view of ischemia

- Cons
- Need supercomputer
 No information on perfusion.

CT-Based FFR (cFFR): Principle

What is CFD?

Computational Fluid Dynamics (CFD) is the science of **predicting** fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena by solving <u>the mathematical equations</u> which govern these processes using a <u>numerical process</u> (that is, on a computer).

HeartFlow: Pioneer of FFR-CT

Customer Login

a

OVERVIEW CLINICAL IMPACT TECHNOLOGY ABOUT US CONTACT

FFR-guided treatment improves patient outcomes and reduces healthcare costs

Fractional Flow Reserve (FFR) is measured during invasive cardiac catheterization and is used to identify functionally significant coronary lesions. Studies have shown that treatment guided by FFR data results in improved clinical outcomes, with significantly reduced risk of death or major cardiac event, and substantially lower healthcare costs.

LEARN MORE

Heart Flow^{*}

This graphic shows FFR_{ct} and does not depict the invasive measurement of FFR. Outcomes data are not yet available for FFR_{ct}. Tonino et al., NEIM 2009 [FAME]; Pijls et al., JACC 2010 [FAME 2-year follow-up]; De Bruyne et al., NEIM 2012 (FAME 2)

Introductory Video

Publications

Recent Trial Data

FFR_{CT} is not commercially available in the United States. FFR_{CT}, HeartFlow and the HeartFlow logo are among the trademarks of HeartFlow, Inc.

LEARN MORE

FFR-CT Published Data: HeartFlow

	DISCOVER- FLOW		DeFACTO		NXT	
Year, Journal	2011, JACC		2012, JAMA		2013, JACC	
Pts. No	103		252		251	
Design	Single	-center	Multicenter		Multicenter	
	СТ	cFFR	СТ	cFFR	СТ	cFFR
Sensitivity	94%	93%	84%	90%	94%	86%
Specificity	25%	82%	42%	54%	34%	79%
PPV	58%	85%	91%	67%	40%	65%
NPV	80%	91%	72%	84%	92%	93%
Accuracy	61%	81%	64%	73%	53%	81

Hecht HS. The Game Changer? JACC 2014 April 1, 1156-8

NXT study

Incorporates learning from previous FFR_{CT} trials:

- Newest generation of FFR_{CT} analysis software
- Strict CT acquisition protocol according to societal guidelines

Nørgaard B, JACC 2014

ASAN Medical Center

NXT study

Per-patient analysis (n=254)

CT (>50% $FFR_{CT} (\leq 0.80)$

Nørgaard B, JACC 2014

ASAN Medical Center

Image-based computerised modelling of coronary circulation: **Future direction**

Planning the treatment strategy using Virtual revascularization & CT-derived computed FFR

Limitations

- High cost
- Long assessing time
- Transportation of patient's medical record and imaging
- Not high specificity
- Lack of evidence for clinical application

Siemens CT-based FFR: cFFR stand-alone, prototype, not commercialized yet

On-site analysis of CT-based FFR on a standalone workstation

- No need of transferring CT images to a remote site
- No need of super-computer for analysis
- Relatively cheep
- Relatively fast turn-around time (approximately 50 min per case)

cFFR: Processing Steps

1. Centerline definition

2. Lumen segmentation

3. Definition of boundary condition

4. cFFR computation

cFFR and CT perfusion

ASAN Medical Center

Siemens cFFR Analysis Compared with CTP and FFR

Cardiovascular Research Foundation

Yang DH, MD, Kim YH, MD, et al (in review)

54 COLLEGE MEDICINE

CTP and cFFR Protocol in AMC

25 minutes using dual-source 126 ch. CT (Siemens)

			10 min. interval			
Calcium scoring	Adenosine infusion	Stress p	erfusion	Sublingual NTG	Rest per (CT	rfusion A)
Scan range	4 min. 30 sec	Retrospective ECG-gating		2 min. Retro before ECC		ective Jating
Tit. (0.74						

dical Center

Patients

	Patients (N=68)
Age, years	62.0 ± 8.9
Male gender	60 (88)
Body mass index, kg/m ²	25.5 ± 3.4
Risk factors	
Diabetes	27 (40)
Hyperlipidemia	17 (25)
Hypertension	30 (44)
Family history	22 (32)
Current smoking	35 (52)
Symptoms	
Atypical chest pain	16 (24)
Typical chest pain	52 (76)
Number of diseased vessel	
No disease	15 (22)
One vessel	32 (47)
Two vessels	14 (21)
Three vessels	7 (10)
Coronary calcium score, Agatston	373.2 ± 790.4

ASAN Nedical Center

Per-vessel Accuracy

Pathway of CT-based Functional Imaging

Cardiac CT: One Stop Shop

Yang DH, Kim YH et al. Radiographics 2015 (in print)

