20TH CARDIOVASCULAR SUMMIT TCTAP2015

Limited Adoption in Selected Patients Is Possible.

Alaide Chieffo, MD

San Raffaele Scientific Institute, Milan, Italy

Bioresorbable scaffolds

Company	Stent	Development	Pre-clinical	Clinical trials	Post-market
Kyoto Medical	Igaki-Tamai	 ✓ 	~	~	
Biotronik	Dreams	v	~	~	
Abbott	Absorb	v	~	~	~
Art	Art18AZ	v	~	~	
Reva Medical	Resolve	v	~	~	
Xenogenics	Ideal biostent	v	~		
Orbus Neich	Acute	v	~		
Elixir	DESolve	v	~	~	~
Amaranth	Amaranth PLLA	v	~		
Huaan Biotech	Xinsorb	v	~	~	
S3V	Avatar	v	~		
Meril	MeRes	v	~		
Zorion Medical	Zorion BRS	v	~		
Lifetech	Lifetech Iron	~	~		

1st generation BVS characteristics

Potentially limiting wide adoption in "real word" scenario in complex lesions

- thickness (>150µm with more than 200µm width)
- fragility

Strut Thickness

First generation BVS thickness

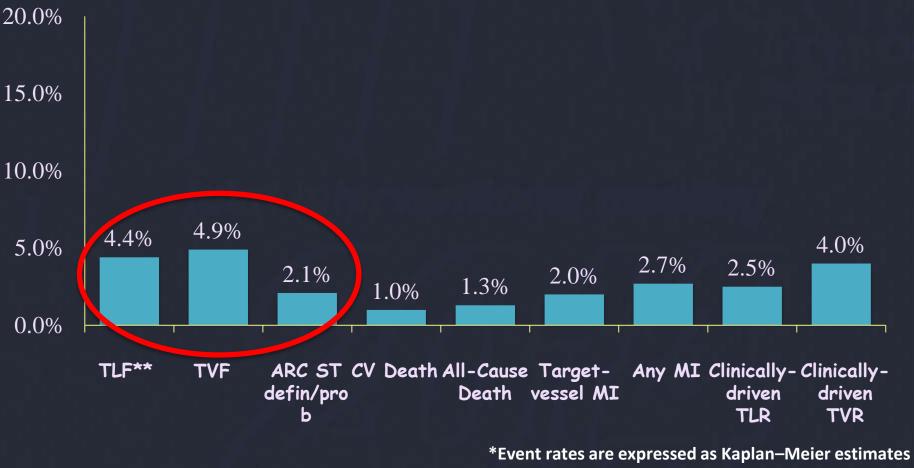
- Poor deliverability in tight lesions and tortuous vessels
- limitation in treating small vessel disease,
 no BVS smaller than 2.5 mm
- difficulties in side-branch access
- avoiding scaffolds overlapping
- bifurcation techniques
- and, potential thrombogenicity

Strut Thickness

- 100 µm new generation BVS already CE marked > soon commercially available in Europe
- Radial force?
- Bioresorption ?

Fragility

- Slow dilatation during implantation is necessary.
 - potential risk of misalignment
- Dilatation beyond limit may result in acute scaffold disruption.
 - not applicable to large vessel
 when side-branch dilatation and kissing-balloon inflation


1 Gen BRS use in real world registries

	patients	type B2/C (%)	Follow up (months)	MACE (%)	TLR (%)	Scaffold thrombosis (%)
Costopoulos et al. 2014	92	83.9	6	3.3	3.3	0 (d)
ABSORB EXTEND Registry	512	41.0	12	4.3	1.8 (ID)	0.8 (d/p)
Liang et al. Registry	35	75.0	2	0	0	0
GHOST EU Multicentre registry	1189	51.2	6	10.1 (TLF)	2.5	2.1 (d/p)
AMC registry et al. Registry	135	67.0	6	8.5	6.3	3 (d)
Elabbassi et al. Registry	140	62.0	12	7.2	2.9 (ID)	
L'Allier P et al. Registry	339	41.0	In-hospital	2	0	1.2 (d)
ASSURE Registry	183	64.6	12	5	2.8	0
ABSORB FIRST ²⁴ Registry	1200	46.7	1	0.8	N/A	0.42 (d/p)

** Device-Oriented composite primary endpoint

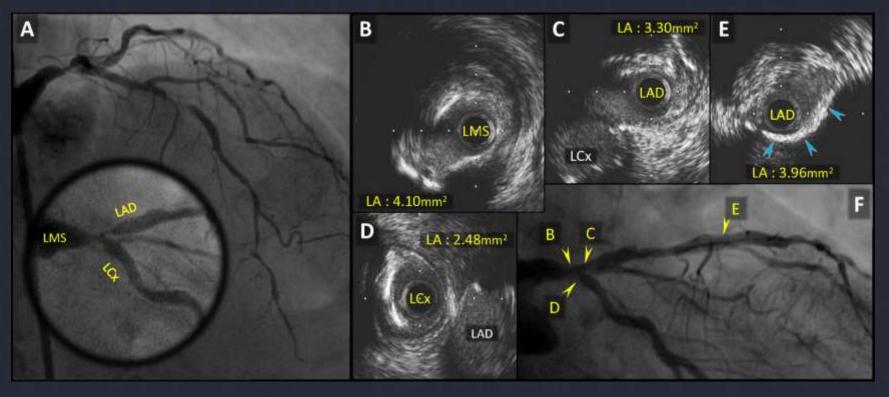
GHOST-EU

GHOST-EU

Lesion-based				
Pre-Dilatation	1,405/1,440 (98%)			
Post-Dilatation	712/1,1440 (49%)			
Patient-based				
No. Target Lesion/Pt	1.2±0.5			
Multivessel Disease	485/1,186 (40.9%)			
SYNTAX Score	11.3±7.9 (820)			
Hybrid (BVS plus non-BVS)	219/1,189 (18.4%)			
IVUS-guided	171/1,184 (14.4%)			
OCT-guided	163/1,184 (13.8%)			
Tot. Scaffold Length (mm)	32.6±23.0 (1,189)			
Aver. Scaffold Diameter (mm)	3.0±0.5 (1,189)			
Tot. Scaffold Implanted (n)	1731			

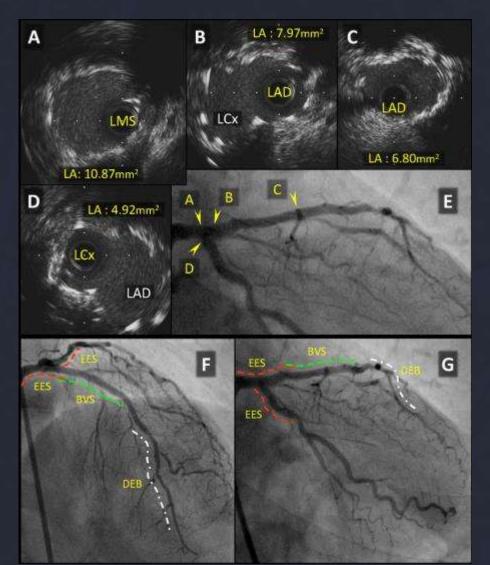
GHOST-EU

LONG LESIONS AND DIFFUSE DISEASE


- BVS is promising in diffuse disease taking its absorption into account
- It is currently the first indication in my practice
- No Overlap but adjacent scaffolds
 - results in further decrease in lumen area
 - increases risk of delayed endothelialisation
 - should be avoided in favor of adjacent scaffolds

Farooq, V., et al. (2011). "Optical coherence tomography (OCT) of overlapping bioresorbable scaffolds: from benchwork to clinical application." <u>EuroIntervention</u> 7(3): 386-399.

LONG LESIONS AND DIFFUSE DISEASE

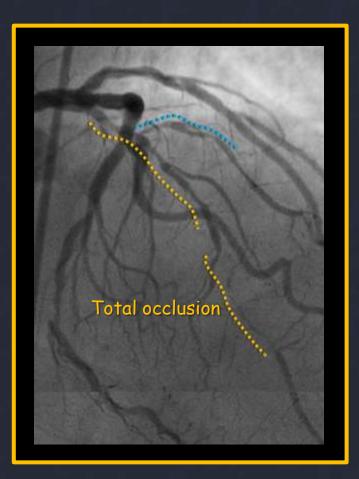


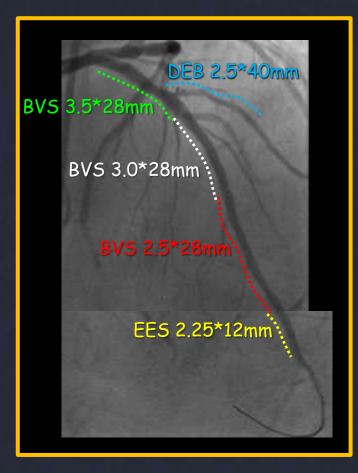
Hybrid revascularization with DES in LMS and BVS and DEB for diffuse LAD disease

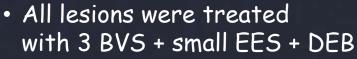
LONG LESIONS AND DIFFUSE DISEASE

Panoulas VF Miyazaki T et al. Hybrid percutaneous coronary revascularisation for a patient with left main bifurcation and extensive, diffuse coronary artery disease Int J Cardiol 2014

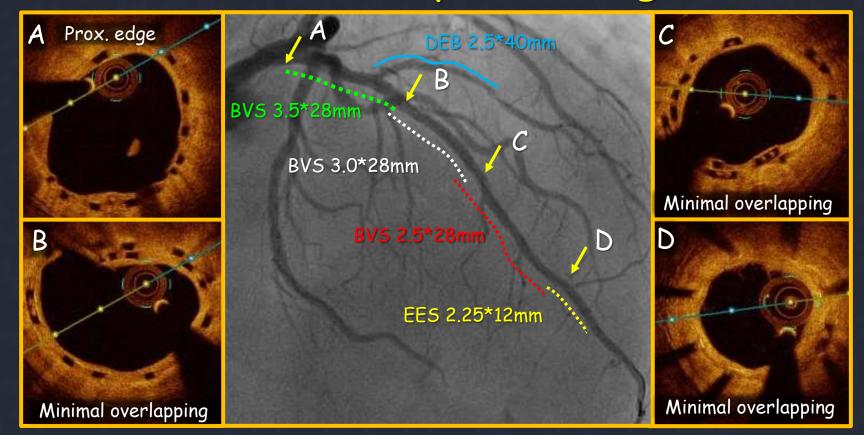
CHRONIC TOTAL OCCLUSION


- As in diffuse disease, BVS can be promising also in CTO lesions.
- Lesion crossability and distensibility could be a matter of concern.
- Evidence stems from just a small number of case reports

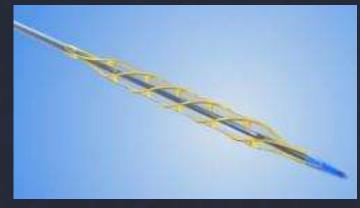

Gori T, Guagliumi G, Munzel T. Absorb bioresorbable scaffold implantation for the treatment of an ostial chronic total occlusion. Int J Cardiol 2014;172:e377-8.



CHRONIC TOTAL OCCLUSION


Diffusely diseased LAD with CTO ()
 All I
 Severe stenosis in the diagonal ()

CHRONIC TOTAL OCCLUSION 18M follow- up OCT images


Favorable neointimal coverage is apparent. Black boxes: scaffolds (and/or tissue matrix) remain visible.

CALCIFIC LESIONS ...

- remain a challenge despite the advent of
 - low-profile, non-compliant, high pressure, bladed or scoring balloons
 - Rotablation or Orbital atherectomy

BRS and calcium...

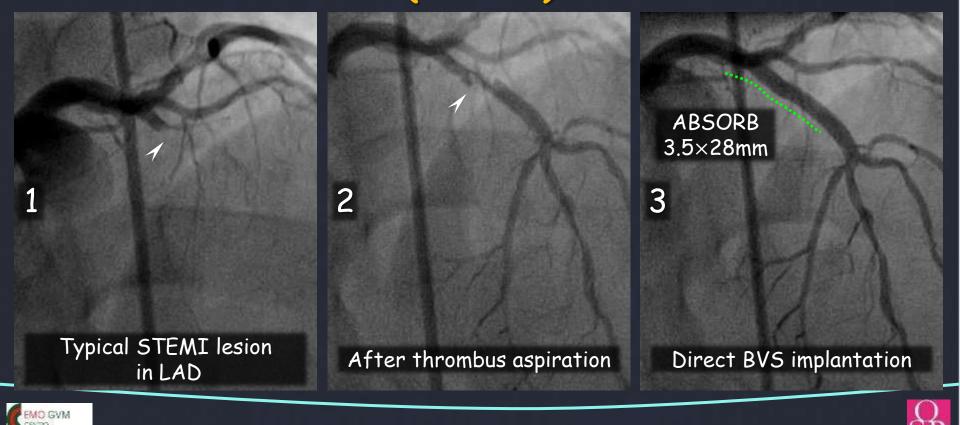
- Bulky device
- Inferior deliverability to latest generation drug eluting stents (DES)
- Radial strength which is reduced
 - With time
 - When expanding the scaffold beyond nominal size

BIFURCATION LESION

- Both the fragility and scaffold thickness make bifurcation stenting more challenging when using BVS vs. metallic DES.
- The strut thickness of main branch BVS causes side-branch occlusion.

Muramatsu, T., et al. (2013). "Incidence and short-term clinical outcomes of small side branch occlusion after implantation of an everolimus-eluting bioresorbable vascular scaffold: an interim report of 435 patients in the ABSORB-EXTEND single-arm trial in comparison with an everolimus-eluting metallic stent in the SPIRIT first and II trials." <u>JACC Cardiovasc Interv</u> **6**(3): 247-257.

BIFURCATION LESION


- Provisional stenting is recommended, with FKB inflation only when necessary.
- TAP with a metal DES in the side branch are preferable in case of crossover.
- Two-BVS T-stent technique can be performed in a high-angle bifurcation.

Dzavik, V. and A. Colombo (2014). "The absorb bioresorbable vascular scaffold in coronary bifurcations: insights from bench testing." <u>JACC Cardiovasc Interv</u> 7(1): 81-88.

BIFURCATION LESION PROVISIONAL HYBRID 2 STENT TECHNIQUE (TAP)

BIFURCATION LESION

5

7

SB ballooning resulting dissection

Xience Prime 2.25×12mm

SB stenting with MB balloon in place

Final result

6

Conclusions 1

1° generation BVS should be adopted in:

- Simple lesions especially in young patients
- Long lesions and diffuse disease>> no overlapping but adjacent scaffolds
- Calcified lesion and CTO only if properly and aggressively prepared
- Non LM bifurcation lesions not involving large SB

Conclusions 2

- It is important to take into account with BVS, especially in complex lesion subsets, longer and more meticolous procedures requiring proper predilatation and if needed postdilatation IVUS/OCT guided
- Awaiting for more clinical data and technology development>> evidence coming from new gen BVS - 100µm

