TCTAP 2015 Morning Roundtable Forum

How to Practically Use FFR for Left Main Disease?

Bon-Kwon Koo, MD, PhD, FACC

Seoul National University Hospital, Seoul, Korea

FFR vs. Revascularization

Why FFR is needed in LM lesions?

- The most important coronary stenosis
- Inaccuracy of angiographic assessment
- Complex lesions: ostial, bifurcation, serial stenoses
- Requires complex intervention

Angiography vs. FFR in Left Main disease

Hamilos et al. Circulation 2009

Park SJ, et al. JACC interv 2012

Safety of FFR-guided defer in Left Main stenosis

FFR ≥ 0.75 or 0.8 → Medical treatment vs. FFR < 0.75 or 0.8 → Revascularization

Ν

Overall Survival

First Author (Ref. #)	Total	Defer Group	Surgical Group	FU (Months) Mean Duration	Defer Group (%)	Surgical Group (%)
Bech et al. (23)	54	24	30	29 ± 15	100	97
Jasti et al. (24)	51	37	14	25 ± 11	100	100
Jiménez-Navarro et al. (25)	27	20	7	26 ± 12	100	86
Legutko et al. (26)	38	20	18	24 ± 12	100	89
Suemaru et al. (27)	15	8	7	33 ± 10	100	100
Lindstaedt et al. (28)	51	24	27	29 ± 16	100	81
Hamilos et al. (20)	213	138	75	35 ± 12	90	85
Total or (mean)	449	271	178	(28 ± 13)	(95)*	(89)
	G-RANK TEST	?: ₽=0.30 26 30 34 38 Jasti, Circulation	2004	20- 0- 0 12 24 Mo	Puri, e 36 48 (nths	et al. JACC interv 2012
SNUH® Seoul National Cardiovascular	Months University H Center	ospital			Hamilos, Cir	culation 2009

FFR application: Level of experience

- Level 1: Setting up
- Level 2: Single intermediate stenosis
- Level 3: Serial stenoses, multi-vessel disease
- Level 4: Left main, bifurcation, jailed side branches
- Level 5: Dobutamine-stress FFR, IMR/CFR, wedge pressure......

Which LM lesion is significant?

Mismatch

: Angiographically significant, functionally insignificant

Reverse Mismatch

: Angiographically insignificant, functionally significant

Possible causes of mismatch and reverse mismatch

When there is a mismatch..

- Pitfalls of FFR measurement
 - Inadequate hyperemia
 - IV adenosine is the ideal hyperemic agent
 - Check the infusion system
 - Use different route, higher dosage, different agent
 - Drift
 - Check with pullback pressure tracing
 - Guiding catheter damping
 - Pull the guide catheter out of the ostium
- Influence of microvascular dysfunction

- Pitfalls of FFR measurement
 - Drift
 - Check with pullback pressure tracing
- Influence of other stenosis
 - Pressure pullback tracing
 - Measure FFR at the other vessel
- Diffuse disease
 - Pressure pullback tracing
- Coronary spasm
- Presence of dissection

Significant Left Main disease?

FFR = 0.78

FFR of LM stenosis : Influence of LAD stenosis on LCX FFR

LCX FFR = 45/61 = 0.74

Clinically significant change occurs only when the other vessel stenosis is proximal and severe.

Yong et al. Circ Cardiovasc Interv. 2013;6:161-165.

Lt main FFR?

LM FFR = 0.79 + [influence of LAD stenosis] - [influence of LCX stenosis]

Left main disease?

Application of FFR in LM lesions

- Evaluation of intermediate or ambiguous LM lesions
- Decision of treatment strategy
 - Finding a ischemia-causing lesion to determine the treatment strategy
 - Measurement of functional SYNTAX score
- Evaluation of jailed LCX or LAD ostial lesion
- Evaluation of non-LM stenoses after LM stenting
- Assessment of residual ischemia after 2 stenting

Assessment for jailed branches after LM stenting

Assessment for residual lesions after LM stenting

After LM-LAD stenting

Assessment for ambiguous lesions after LM stenting

Evaluation of procedure after 2 stenting

After provisional T stenting Balloon angioplasty for ramus branch

Functionally complete revascularization

How to practically use FFR for Left main disease?

- Carefully assess the lesion severity in all vessels (non-LM disease, collaterals...)
- Measure FFR at distal of more diseased major vessel

 \rightarrow If significant, do the pull-back pressure tracing

- Measure FFR at distal of the other major vessel
 - → If significant, do the pull-back pressure tracing
 - → If insignificant, consider the influence of the other stenoses when the other vessel has severe proximal stenosis
- If both vessel FFRs are significant, double-check the pull-back tracing curves to exclude the influence of the other stenoses on LM FFR.
- When complex intervention is needed use both IVUS and FFR.