Angiosome-based intervention is associated with Improved outcomes in BTK

Seung-Whan Lee, MD, PhD

Department of Cardiology, Heart center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Angiosome ? 3D vascular territories

supplied by specific source arteries drained by specific veins

Originally plastic and reconstructive surgery Preserve blood flow for surgical wounds to heal

AP 2014

Angiosome Foot and Ankle

TCTAP 2014

LAND UNIVERSITY OF ULSAN ASAN Modical Center

Angiosome Foot and Ankle

TCTAP 2014

Six angiosomes of the foot and ankle

The posterior tibial artery (3 angiosomes)

-medial calcaneal artery angiosome,-medial plantar artery angiosome-lateral plantar artery angiosome

The anterior tibial artery (1 angiosome) -anterior tibial artery and dorsalis pedis angiosome

The peroneal artery (2 angiosome)

-lateral calcaneal artery angiosome -anterior perforator artery angiosome

Angiosome-Based approach Direct vs. Indirect revascularization

In the real practice, angiosome-based direct revascularization for ischemic wounds is not always successful because of lesion complexity: 40-50%

Angiosome-Based approach

Direct vs. Indirect revascularization

Angiosome-Based approach

Retrospective analysis of 201 diabetic CLI-BTK leisons

Results	Direct EVT	Indirect EVT	Р
	(N = 167)	(N = 34)	
Major amputation	16 (9.6%)	3 (8.8%)	
Limb salvage	151 (90.4%)	31 (91.2%)	0.92
Mean TcPO2	42	38.2	0.21

The DR technique is the first treatment option; however, that IR is similarly effective over time.

Cardiovasc Intervent Radiol (2013) 36:637-644

Angiosome-based revascularization Meta-analysis

Wound healing

Study or Subaroup	log[layord Datio]	er	Direct revascular.	Indirect revascular.	Weight	Hazard Ratio	Vear	Hazar	d Ratio	
Study of Subgroup	log[Hazard Ratio]	56	Total	Total	weight	IV, Random, 95% CI	rear	iv, Kando	m, 95% CI	
Varela 2010	-0.29	0.27	45	31	13.9%	0.75 [0.44-1.27]	2010		-	
Azuma 2012 a	-0.2	0.2	59	51	25.3%	0.82 [0.55-1.21]	2012	-		
Azuma 2012 b	-0.59	0.22	67	41	20.9%	0.55 [0.36-0.85]	2012	-		
Kabra 2013	-0.6	0.29	39	25	12.0%	0.55 [0.31-0.97]	2013			
Söderströrn 2013	-0.58	0.19	121	129	28.0%	0.56 [0.39-0.81]	2013			
Total (95% CI)			331	277	100.0%	0.64 [0.52-0.78]		•		
Heterogeneity: Tau ² =	0.00; Chi#= 3.05, df	= 4 (⁰ = 0.55); I ² = 0%					to de	<u> </u>	
Test for overall effect	Z = 4.46 (P < 0.0000)1)	N.					U.U1 U.1 Favours direct revasc.	1 10 Favours indire	100 ctrevasc

HR 0.64, 95% CI: 0.52-0.78

Eur J Vasc Endovasc Surg 2014;47:517-22

Angiosome-based revascularization

Meta-analysis

Limb salvage

		1.000	Direct revasculariz.	Indirect revasculariz.		Hazard Ratio	220000	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Tota	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% CI
Varela 2010	-0.28	0.5	45	31	12.7%	0.76 [0.28-2.01]	2010	
Alexandrescu 2011	-0.65	0.4	134	98	15.1%	0.52 [0.24-1.14]	2011	
Blanes Ortí 2011	-0.59	0.88	18	16	6.6%	0.55 [0.10-3.11]	2011	
Ferrufino-Mérida 2012	-4.16	0.92	23	9	6.2%	0.02 [0.00-0.09]	2012	
lida 2012	-0.36	0.25	200	169	19.0%	0.70 [0.43-1.14]	2012	
Kabra 2013	-0.69	0.67	39	25	9.4%	0.50 [0.13-1.86]	2013	
Lejay 2013	-1.17	0.42	36	22	14.6%	0.31 [0.14-0.71]	2013	
Söderström 2013	-0.48	0.36	121	129	16.2%	0.62 [0.31-1.25]	2013	
Total (95% CI)			616	499	100.0%	0.44 [0.26-0.75]		•
Heterogeneity: Tau ² = 0.	32; Chi ² = 18.21, df =	7 (P	= 0.01); l² = 62%					
Test for overall effect: Z :	= 3.02 (P = 0.002)						F	avours direct revasc. Favours revasc.

HR 0.44, 95% CI: 0.26-0.75

Eur J Vasc Endovasc Surg 2014;47:517-22

ASAN Medical Center

Angiosome-based revascularization Meta-analysis Limb salvage

When feasible, direct revascularization of the foot angiosome affected by ischemic tissue lesions may improve wound healing and limb salvage rates compared with indirect revascularization

Angiosome Indirect revascularization

In the real practice, angiosome-based direct revascularization for ischemic wounds is not always successful because of lesion complexity: 40-50%

So, to find benefit population of inevitable indirect revascularization is also clinically important !!!

Angiosome-based revascularization

718 consecutive CLI patients, with ischemic tissue loss

TCTAP 2014

O Iida, et al. Eur J Vasc Endovasc Surg 2013;46:575-82

Angiosome-based revascularization

718 consecutive CLI patients, with ischemic tissue loss

Stratification

■ Non-diabetes with direct EVT and/or CRP < 3 mg/dl

Limb prognosis was equivalent for direct and indirect endovascular revascularization except in the presence of *both diabetes and wound infection*, when indirect revascularization has a poorer outcome.

TCTAP 2014

0.88 (0.67 to 1.15) 1.05 (0.54 to 2.04) 2.17 (1.54 to 3.06)

O Iida, et al. Eur J Vasc Endovasc Surg 2013;46:575-82

Role of Indirect revascularization Why different ?

DM vs. non-DM

Indirect revascularization DM vs. non-DM

The usefulness of indirect revasc in a population of patients with diabetes has potential limitations. It follows that the obliteration of collaterals typical of a patient with diabetes would likely render indirect revasc less useful than direct revasc

Vasc Endovascular Surg. 2010;44:654-60

1 year ulcer healing 2 year limb salvage

TCTAP 2014

40

20

()

Angiosome Indirect revascularization

Role of Indirect revascularization depends on collateral function to ulcer healing artery

Role of multi-vessel EVT Angiosome-based Direct vs. indirect

Angiosome-concept enough ?

Retrospective analysis of 1268 CLI-patients and PTA BTK

Number of patent arteries post-PTA

AMC data

- January 2008 ~ September 2013
- Total 303 CLI patients (Rutherford 5 or 6)
- Procedure success in 284 patients (93.7%)

Multi-vessel Disease in BTK CLI AMC data (304 limbs)

Treatment Strategy in BTK CLI

Direct revascularization : 80% Indirect revascularization: 20%

Angiosome-guided EVT in BTK CLI

Multivessel-guided EVT in BTK CLI

Treatment strategy in BTK CLI

Results	Angiosome (+) N=201	Angiosome (-) N=50	Р
Major amputation	4 (1.9)	1 (2.0)	0.88
Limb salvage	197 (98.1)	49 (98.0)	

Conclusions

 Angiosome-based revascularization is a reliable and practical strategy in CLI patients, yielding better clinical success including limb salvage and wound healing.

 if Indirect revascularization is feasible, try to open artery with good collaterals to affected angiosome

 Despite controversy, for limb salvage, the more, the better, but angiosome-targeted artery should be reestablished.

