FFR Guided Clinical Practice of Left Main PCI

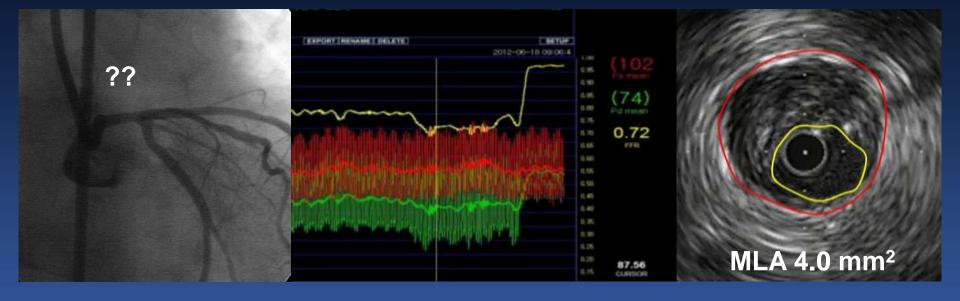
Seung-Jung Park, MD, PhD

Heart Institute, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

Why FFR?

Skjisifiedafintn**ætieonesi**s Negjativæt EFF R

47/M Stable Angina

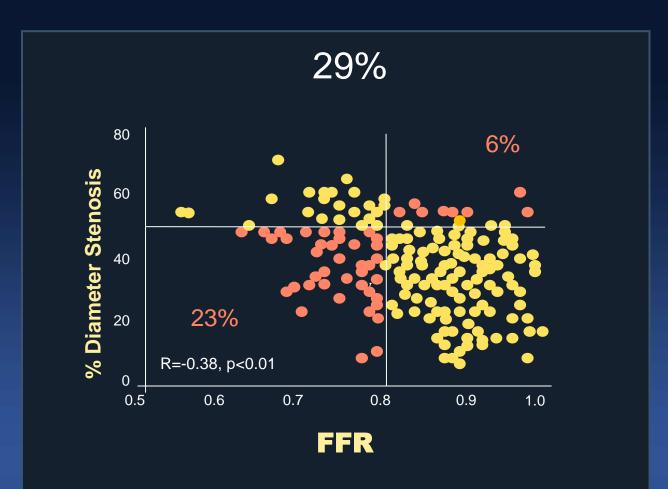


Ingenificant Stenesis Positive FFR

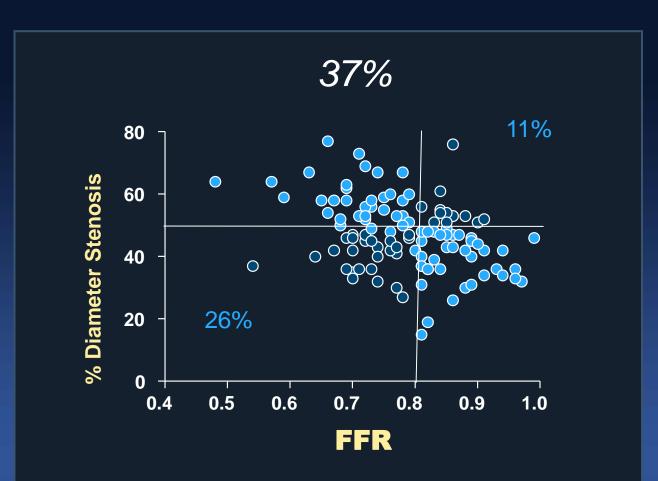
62/F Stable Angina

Why FFR?

Accurate Diagnosis First ! Many Visual-Functional Mismatches.


How Many Mismatches ?

Many Mismatch Intermediate LM Disease, Overall



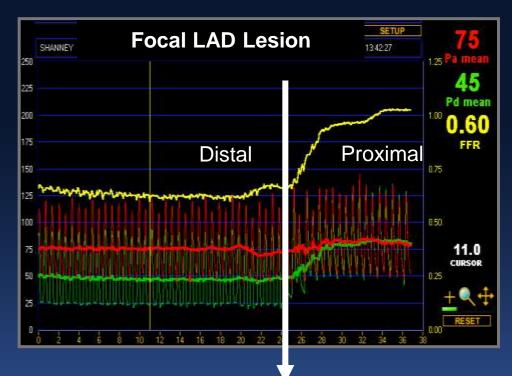
Hamilos M et al. *Circulation 2009;120:1505-1512*

Many Mismatch Intermediate LM Disease, Os/Shaft

Park SJ et al. JACC-CI (In Press)

Why Mismatches ?

FFR vs. Angiographic DS (%)

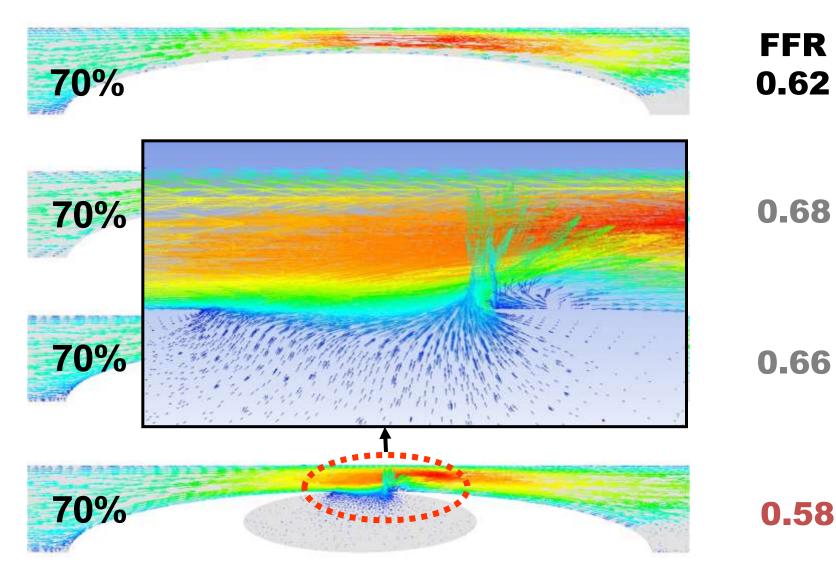


- 100-200 ug IC NTG
- Adenosine infusion
- intracoronary bolus 60-70 ug
- intravenous continuous infusion 140-280ug/kg/min

Measure the Gressane Elcop at Maximal Hyperemia

FFR Is Mainly Determined By

Size of Myocardium and
Lesion Specific Local Factors.

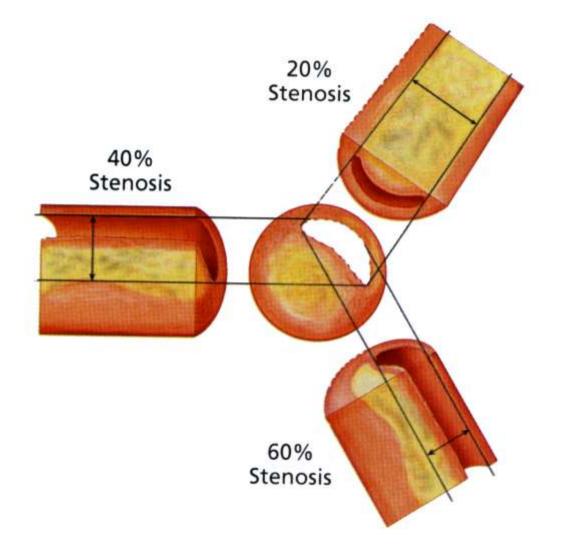

Multivariable Analysis to Predict FFR <0.80, LM (n=112)

Variables	OR	95%CI	p-value
Model 1			
MLA, mm ²	0.37	0.25-0.56	<0.001
Plaque rupture	4.51	1.36-14.9	0.014
Age, year	0.95	0.90-1.00	0.033
BMI, kg/m²	1.19	1.00-1.40	0.05
Model 2			
MLA, mm ²	0.34	0.21-0.54	<0.001
Age, year	0.94	0.90-0.99	0.022
LV mass, g	1.01	1.00-1.03	0.03

Model 1 included clinical, QCA, and IVUS variables Model 2 included Model 1 plus LV mass assessed by **Echocardiography**

Influence of Plaque Rupture

3D Computed Simulation Study, AMC data


Angiographic DS (%) Has *Inherent Limitation* to Assess the Functional Significance of Stenosis.

Angiographic %DS 2-Dimensional, Single Cut Image

Why Mismatches ?

- FFR Is Determined by Size of Myocardium and Many Lesion Specific Local Factors; FFR Is A Summation of Anatomical and Functional Integration of Stenosis.
 "Total Morphology Perception"
- Angiographic % DS is Simply, 2-Dimensional, Single Cut Image Measurement.

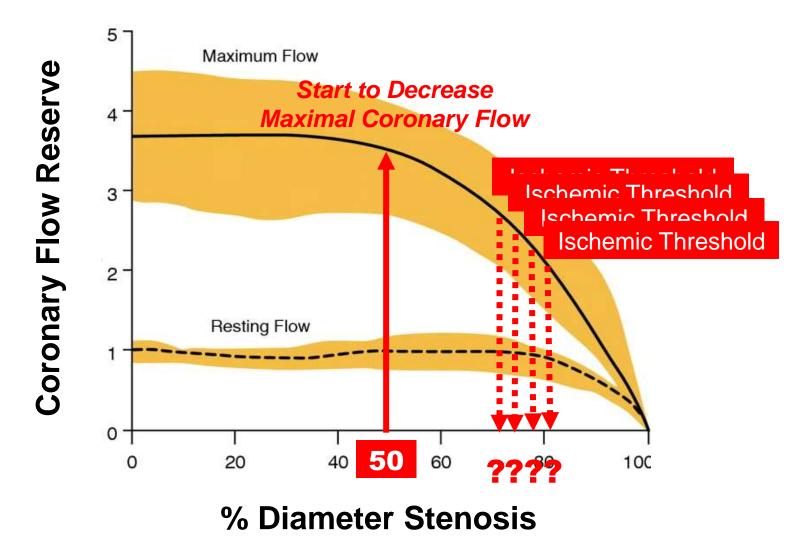
They are Totally Different !

Park SJ et al, JACC Intv 2012;5:1029 -36

What Does It Mean, *FFR Guided* ?

FFR Matched Non-Invasive Stress Tests, Cut-off Value (0.72~0.78) Is Extremely Reproducible and Very Solid.

Author	Number	Stress Test	Best Cut-off	Accuracy
Pijls et al.	60	X-ECG	0.74	97
DeBruyne et al.	60	X-ECG/SPECT	0.72	85
Pijls et al.	45	X-ECG/SPECT/pacing/DSE	0.75	93
Bartunek et al.	37	DSE	0.68	90
Abe et al.	46	SPECT	0.75	91
Chamuleau et al.	127	SPECT	0.74	77
Caymaz et al.	40	SPECT	0.76	95
Jimenez-Navarro et al.	21	DSE	0.75	90
Usui et al.	167	SPECT	0.75	79
Yanagisawa et al.	167	SPECT	0.75	76
Meuwissen et al.	151	SPECT	0.74	85
DeBruyne et al.	57	MIBI-SPECT post-MI	0.78	85
Samady et al.	48	MIBI-SPECT post-MI	0.78	85
Ahn JM et al.(2011)	151	SPECT	0.77	89


FFR-Guided Means, Ischemia Guided !

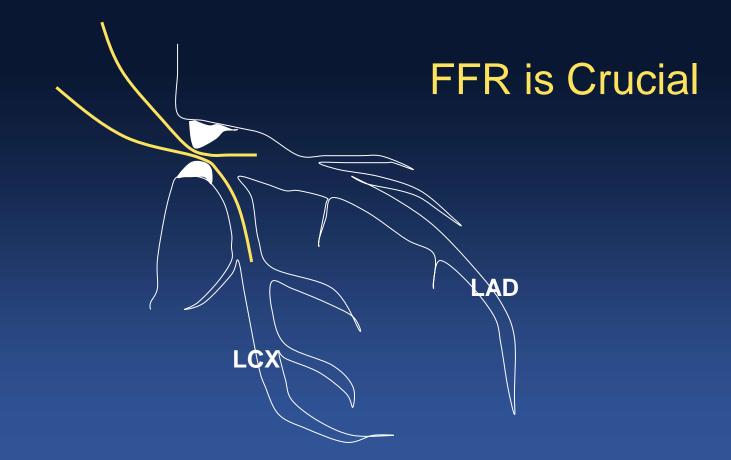
Physiologic Meaning of 50% DS Background from Animal Study

FFR-Guided Means, *Ischemia Guided !*

Angio-Guided Means, *No Clinical Relevance !*

2013, ESC Guidelines

Recommendations	Class	Level
FFR is recommended to identify hemodynamically relevant coronary lesion(s) when evidence of ischemia is not available.		A
Revascularization of stenosis with FFR <0.80 is recommended in patients with angina symptoms or a positive stress test.		B
Revascularization of an angiographically intermediate stenosis without related ischemia or without FFR <0.80 is not recommended.		


How I Implement FFR in Real Practice ?

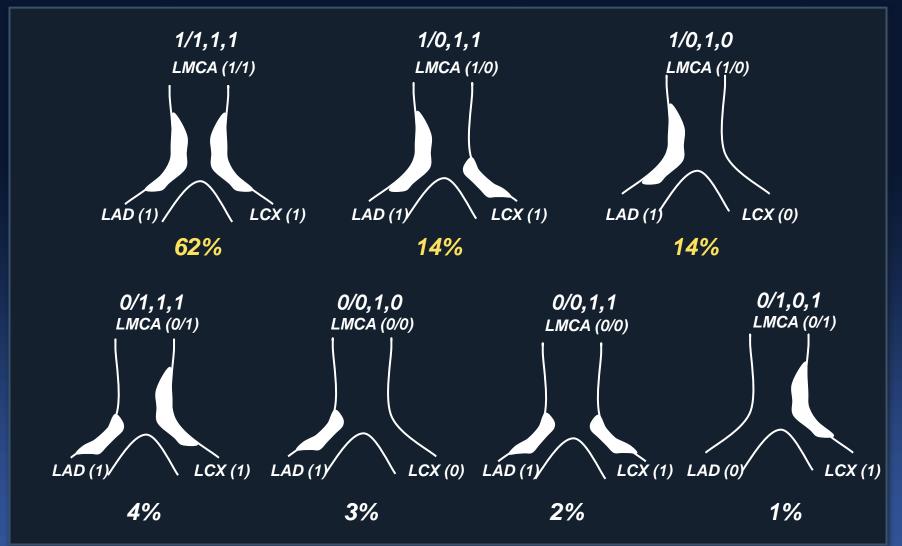
For the Undetermined, Intermediate Ostial and Shaft LM Lesion,

For Bifurcation LM Lesion, Have Problem to Measure FFR ??

- Possible False Negative

It may be Conceptual Concern !

Courtesy of Akiko Maehara, MD


In Reality,

Plaque Distribution by IVUS (n=140)

In 90% plaque extends from LMCA-LAD

Oviedo C et al. Circ Cardiovasc Interv 2010;3:105-12.

Plaque Distribution by IVUS (n=82)

DLM POC N. (%) LAD LCX		LAD ostium, MLA (mm²)	POC, MLA (mm²)	DLM, MLA (mm²)	LCX ostium, MLA (mm²)	
	5 (6%)	4.4±2.0	9.6±4.4	8.1±4.7	3.4±1.6	

LM Bifurcation Disease Would be Defined Single Unit of Disease.

人	4 (5%)	3.4±1.9	5.2±1.9	5.8±4.7	3.9±2.0	
八	4 (5%)	2.8±0.7	5.1±2.1	5.1±2.2	6.6±1.7	
人	5 (6%)	3.4±1.9	5.2±2.6	5.1±3.8	4.6±2.1	

Kang et al, Catheterization and Cardiovascular Interventions. 2011 Jul 29

For the Intermediate LM Bifurcation Lesion,

If Transducer Placed Beyond Bifurcation in both LAD and LCX,

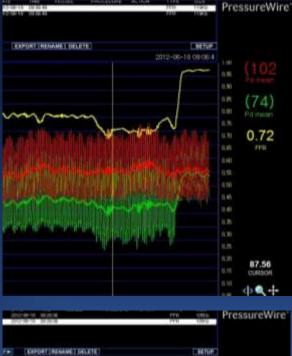
Single Unit of Disease

Composite FFR still Works.

Main Issue is How to Treat, Single Stent Cross Over or 2 Stents Technique According to the Composite FFR.

Single Unit of Disease

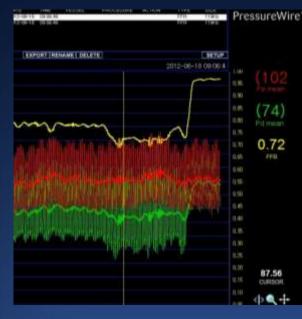




LM Bifurcation Disease with Medina (1,1,0)

55/M, Stable angina, TMT (+), Thallium scan (-)

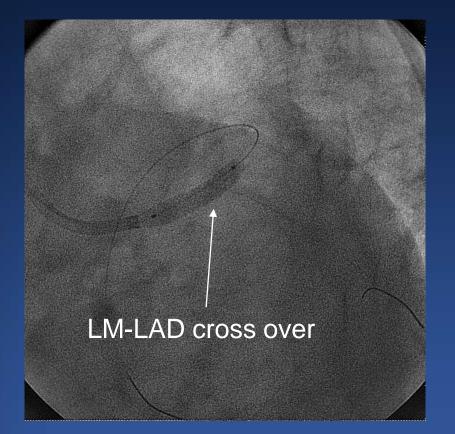
FFR in Both LAD and LCX,

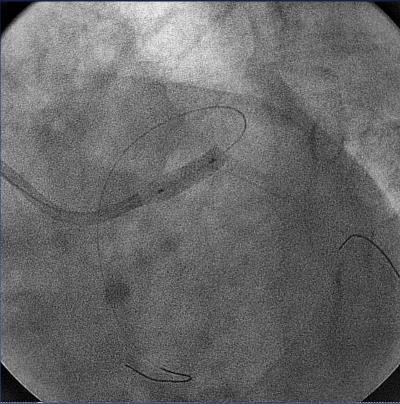


IVUS in Both LAD and LCX,

Distal LM, RVD 6.2mm

Minimal disease at LCX ostium

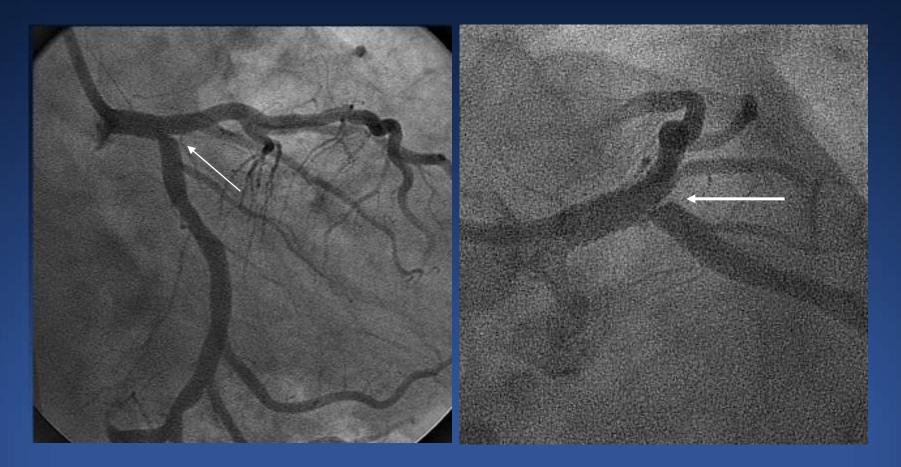



ASAN Medical Center

CVRF

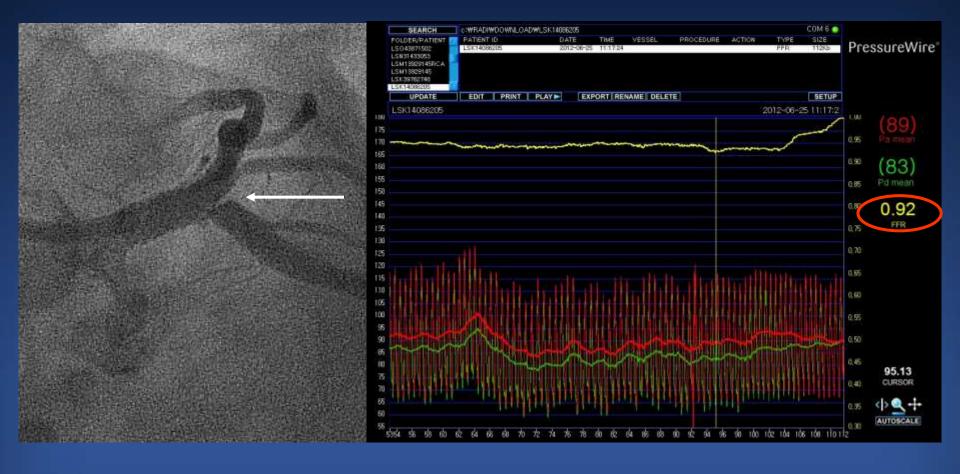
We Decided, Just Single Stent Cross-Over !

Promus Element 4.0x20


Additional high pressure Inflation with 4.0 mm non-compliant balloon

CTAP 2013

After Stent Cross-Over, LCX Ostium Was Jailed !


What Would You Do?

Do You Want to Treat Jailed Side Branch? Consider FFR, First !

Medical Center CVRF

Integrated Use of FFR and IVUS Means,

FFR Guided Decision Making and IVUS Guided Optimization Can Make An Excellent Clinical Outcomes.

LM PCI

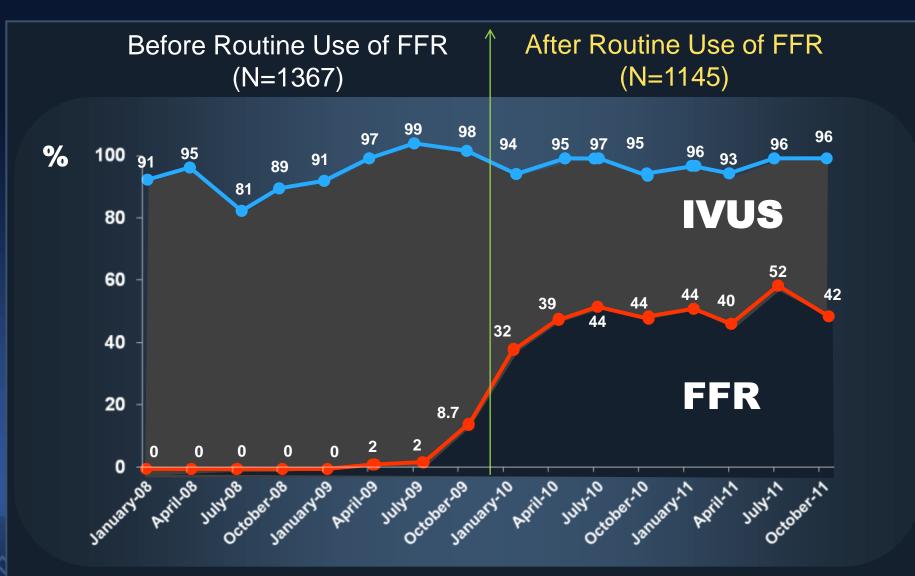
Why IVUS Too ?

1. IVUS Guidance Saves Lives.

- 2. Assessment of LM Ostium, Reference Vessel Diameter, Pattern of Remodeling, and Vulnerability of Plaque.
- Treatment Strategy Would be Simplified as Single Stent Cross-Over Depending on the Disease Status of LCX Ostium by Separate IVUS Run.
- IVUS Guided Stent Optimization and Effective Stent CSA Can Make a Good Clinical Outcomes.
- Smaller IVUS MLA 4.5 mm² Can Predict Functional Significance of LM Stenosis.

Clinical Data, 2014

Impact of Integrated Use of FFR and IVUS for Left Main and 3-Vessel Disease Revascularization in Real Practice.


2014, Data from ASAN Multi-Vessel and Left Main Disease Registry

Integrated Use of FFR and IVUS (AMC data, n=2512)

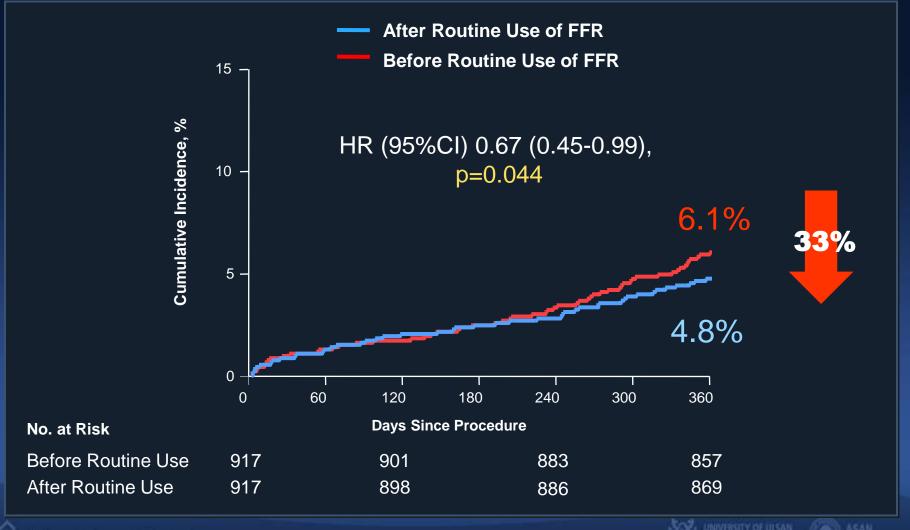
Propensity Matched Population Overall Clinical Outcomes

Before Routine Use of FFR vs. After Routine Use of FFR (971 pairs)

Procedural Characteristics of PCI

	Before Routine FFR (N=663)	After Routine FFR (N=566)	P value
Fractional flow reserve	13 (2.0)	237 (41.9)	<0.001
Mean	0.87±0.08	0.77±0.12	
>0.80	13 (86.7)	133 (39.8)	
0.75-0.80	0	77 (23.1)	
<0.75	2 (13.3)	124 (37.1)	
N. of Deferred lesions	13 (86.7)	145 (43.4)	
No. of stents	3.04±1.52	2.51±1.39	<0.001
Total stent length, mm	77.7±40.9	65.6±39.0	<0.001
Average stent diameter, mm	3.32±0.28	3.33±0.32	0.63

Procedural Characteristics of CABG

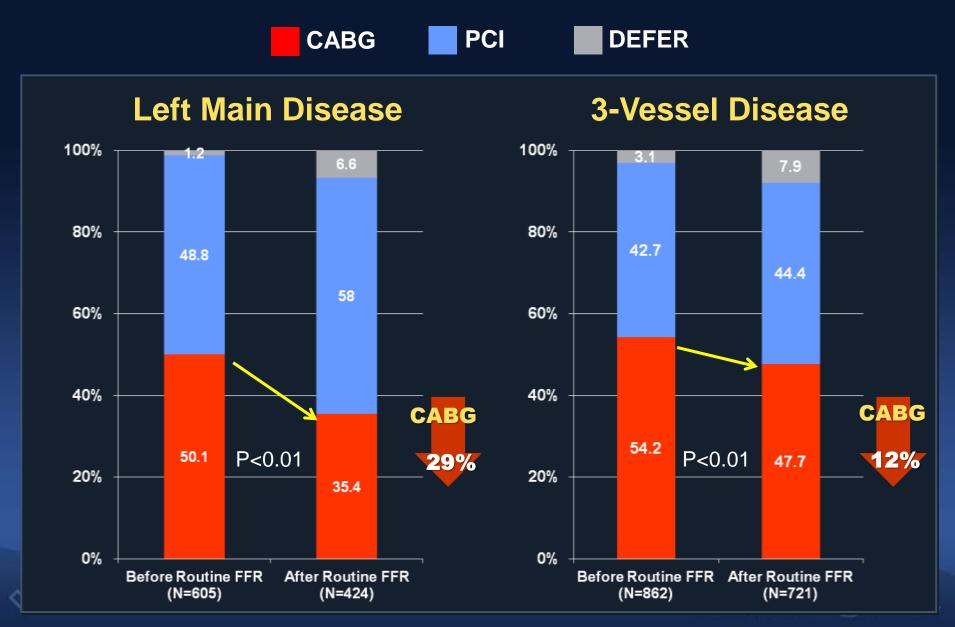

	Before Routine FFR (N=770)	After Routine FFR (N=494)	P value
Number of conduit	2.97±0.94	3.08±0.94	0.038
Number of vein conduit	1.17±0.90	1.30±0.85	0.009
Number of arterial conduit	1.80±0.87	1.78±0.90	0.69
Internal thoracic artery	757 (98.3)	481 (97.4)	0.25
Off-pump	499 (64.8)	433 (87.7)	<0.001

Propensity Score Matched Population

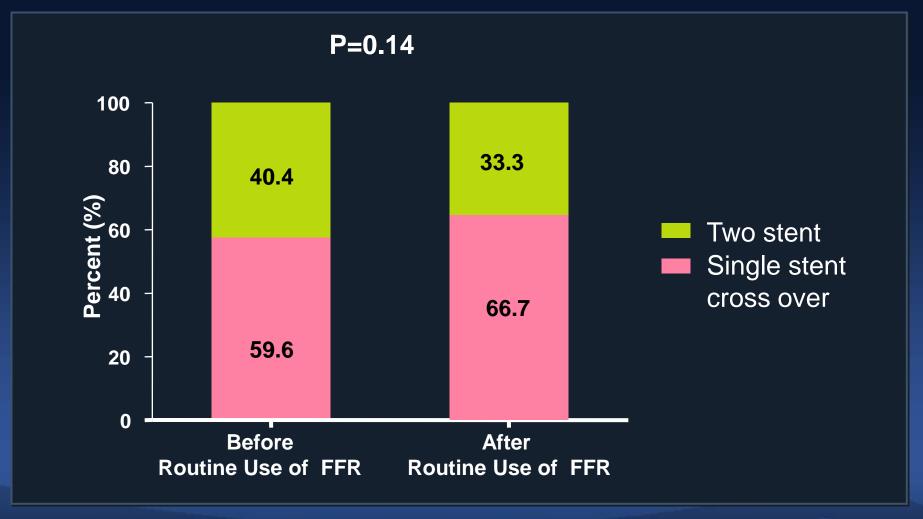
Primary End Point Death, MI, Stroke or Repeat Revascularization

CardioVascular Research Foundation

New Data from AMC Registry, 2014

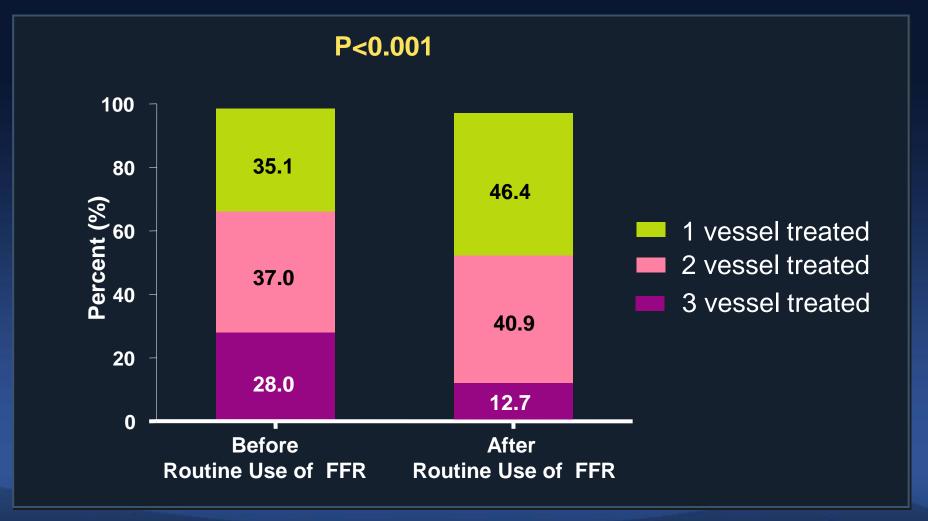

Treatment Strategy Changes

CABG DEFER PCI 100% 2.3 7.4 80% 45.2 49.4 60% CABG 18% 40% P<0.01 52.5 43.1 20% 0% before Routine FFR After Routine FFR (N=1467) (N=1145)



ASAN Medical Center

Treatment Strategy Changes



Procedural Change in PCI Distal LM Treatment

Procedural Change in PCI 3 Vessel Disease, Treatment

Propensity Score Matched Population

LM and 3-Vessel, Subgroup Analysis

1 Year Event Rate (%)		Adjusted Hazard Ratio) P value	
Left Main Disease	CABG PCI N=231 N=231		(95% CI)	
Before Routine FFR After Routine FFR Death, MI, or stroke	15 (5.0) 25 (8.5) 7 (4.6) 15 (6.2)	+	1.89 (0.84-4.25) 1.02 (0.32-3.21)	0.12 0.97
Before Routine FFR After Routine FFR Any Repeat Revasculariza t	10 (3.3) 4 (1.4) 6 (4.0) 6 (2.5) tion	-	0.60 (0.14-2.54) 0.50 (0.12-2.06)	0.49 0.34
Before Routine FFR After Routine FFR	5 (1.7) 21 (7.2) 2 (1.3) 10 (4.2)	-	3.53 (1.14-11.0) 1.48 (0.24-8.98)	0.029 0.67
3 Vessel Disease	N=529 N=529			
MACCE				
Before Routine FFR After Routine FFR	21 (4.5) 24 (6.5) 18 (5.3) 15 (4.7)	4	1.30 (0.63-2.65) 0.83 (0.38-1.81)	0.48 0.65
Death, MI, or stroke				
Before Routine FFR	18 (3.9) 9 (2.5)		0.67 (0.27-1.65)	0.38
After Routine FFR	17 (5.0) 9 (2.8)		0.63 (0.27-1.48)	0.29
Any Repeat Revascularizat	tion			
Before Routine FFR After Routine FFR	3 (0.7) 15 (4.2) 3 (0.9) 8 (2.5)	0.1 1 10 10	5.12 (1.11-23.7) 1.33 (0.30-5.97) 00	0.036 0.71
	PCI Better	r CA	BG Better	

Independent Predictors of Primary End Point

	Hazard Ratio (95% CI)	P value
Chronic renal failure	2.41 (1.61-3.59)	<0.001
Multivessel disease	1.89 (1.45-2.46)	<0.001
Peripheral vascular disease	1.84 (1.07-3.17)	0.027
Bifurcation lesion	1.37 (1.09-1.71)	0.006
Acute coronary syndrome	1.37 (1.10-1.69)	0.004
Total stent length per patient	1.01 (1.00-1.01)	<0.001
Fractional flow reserve	0.72 (0.53-0.98)	0.036
Intravascular ultrasound	0.57 (0.40-0.81)	0.002

FFR Guided Clinical Practice Of Left Main PCI

- Various Clinical Variables Can Predict MACE, but the Only Two Procedure-Related Variables Use of FFR and IVUS Can Reduce MACE Mainly Due to Reduced Rate of Any Repeat Revascularization of PCI.
- 2. FFR guided PCI Showed Similar Clinical Outcomes with Concurrent CABG at 1 year and It Had Reduced Role of CABG as the Primary Treatment Strategy.
- **3**. Better Concept of PCI is Important for Better Outcomes. Less surgery, Less DES and Simplified Procedure Can Improve Clinical Outcomes.

Thank You !!

and all can be as in such

summitMD.com

