Provisional stenting for Left Main Bifurcation: When, How and Long-Term Clinical Outcomes

I Sheiban
University of Turin

Director Interventional Cardiology
Pederzoli Hospital
Pechiera del Garda (Verona) / Italy

E-mail: isheibasn@yahoo.com
Distal LM PCI:

Single stent: « Provisional T Stenting «

Double–stent approaches (T stenting, Crush, Coulotte, V stenting ...)

- No gold-standard technique has been identified..
- It is generally accepted (as for bifurcation lesions) that single stenting, when possible, should be preferred ..
Why single stenting?

• Simplest
• Best short and long-term results:
 ▪ Safety
 ▪ Less TVR
 ▪ “Easy” TVR
• Cheapest
Provisional T-Stenting Technique:

Critical steps

1. Which one is the “main” vessel – LAD or CX?
 – Where is the greatest amount of viable myocardium?
 – Where is the most severe and longer lesion?

2. Is the result after kissing satisfactory?
 – Accept 30% residual stenosis in general
 – Accept higher degrees of residual stenosis if:
 • Normal distal flow (TIMI 3)
 • Focal lesions
 • Small distal amount of myocardium
 • Don’t rely on a single angio view (such as “spider”) . Liberal use of IVUS or FFR in case of doubt
Lesion Specific Approach

Single stent
- Normal ostial LCX with MEDINA 1.1.0. or 1.0.0.
- Small LCX with < 2.5 mm in diameter
- Diminutive LCX
- Normal or focal disease in distal LCX

Two stent
- Diseased LCX with MEDINA 1.1.1., 1.0.1., or 0.1.1
- Large LCX with > 2.5 mm in diameter
- Diseased left dominant coronary system
- Concomitant diffuse disease in distal LCX

Park SJ, Kim YH. Colombo A, Issam D. Moussa et al. Textbook of Bifurcation Stenting
Favorable or Unfavorable Anatomical Features for Single-Stent Crossover Stenting in Treatment of Unprotected Left Main Coronary Artery Stenosis

<table>
<thead>
<tr>
<th>Favorable</th>
<th>Unfavorable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insignificant stenosis at the ostial LCX with Medina classification</td>
<td>Insignificant stenosis at the ostial LCX with Medina classification</td>
</tr>
<tr>
<td>1,1,0 or 1,0,0</td>
<td>1,1,1; 1,0,1; or 0,1,1</td>
</tr>
<tr>
<td>Diminutive LCX with <2.5 mm in diameter; right dominant coronary system</td>
<td>Large size of LCX with ≥2.5 mm in diameter; left dominant coronary system</td>
</tr>
<tr>
<td>Wide angle with LAD</td>
<td>Narrow angle with LAD</td>
</tr>
<tr>
<td>No concomitant disease in LCX</td>
<td>Concomitant disease in LCX</td>
</tr>
<tr>
<td>Focal disease in LCX</td>
<td>Diffuse disease in LCX</td>
</tr>
</tbody>
</table>

JS Park, J Am Heart Assoc., 2012
Single Stenting in Distal LM

IVUS Guided:
- LCX Disease Status
- Stent Size Selection
- Cross Over to LAD or LCX
- Stent optimization

FFR Guided:
- Decision Making for further interventions on SB
LM Disease: Visual Estimation vs FFR

FFR = 0.89

FFR = 0.68

Hamilos M et al; Circulation 2009;120:1505-1512
LM Disease:

FFR ≥ 0.80 Managed Medically (136 pts) vs

FFR ≤ 0.80 Managed Surgically (73 pts)

Isolated LM Disease

5-yr Survival:
100% Med vs 75% Surg (P=0.32)

5-yr MACE-Free Survival:
70% Med vs 66% Surg (P=0.54)

Hamilos M et al; Circulation 2009;120:1505-1512
A significant lesion at prox LAD or prox LCX can mask the true significance of the left main coronary artery lesion by compromising hyperemic flow and subsequent true maximal pressure gradient across this lesion.

After treatment of the distal lesion, hyperemic blood flow through the vessel increases and the true fractional flow reserve (FFR) of the left main coronary artery lesion becomes apparent.

LM Distal Bifurcation Lesion
Minimal Disease on LCX

Single stenting
Geometric changes in left main coronary artery bifurcation after main-branch stenting. (carina shift)

FFR of Jailed LCX After Stenting from LM to LAD (Pts = 29)

Ostial LCX % stenosis by QCA:
Pre LM-LAD Stenting: 30 ±15% Post: 56 ±21% in 17 pts (60%)
FFR < 0.80 in 5 pts (17%)
From a clinical perspective, MLA ≥ 6 mm² is a safe value for deferring revascularization of the LMCA.
Minimal stent area threshold values for the prediction of angiographic in-stent restenosis

Integrated use of FFR and IVUS in left main stenting.

Intermediate LMCA stenosis (DS* 30-70%)

Ostial or Shaft Stenosis
- Whether to Treat or Not: FFR guidance
 - FFR measurement is crucial
- How to Treat: IVUS guidance
 - Pre-intervention IVUS evaluation
 Evaluate minimal lumen diameter, reference vessel diameter, lesion length, plaque burden and distribution.
 - Pre-intervention IVUS optimization
 MSA‡ >8.2mm² is important

Bifurcation Stenosis
- Whether to Treat or Not: FFR guidance
 - FFR measurement is important
 Consider a bifurcation stenosis as a single unit of disease (see Figure 2.)
 - IVUS can assist the functional evaluation of bifurcation stenosis
 MLA* >4.8mm² (sensitivity 89%, specificity 83%) and plaque burden>72% (sensitivity 73%, specificity 79%) to predict FFR≤0.80 (see Figure 3.)
- How to Treat: IVUS guidance
 - Pre-intervention IVUS evaluation
 Evaluate anatomic features favoring single stent cross over stenting (see Table 4.)
 - Post-intervention IVUS optimization
 Evaluate MSA in every segment of LMCA (see Figure 5.)

* Visual estimated diameter stenosis; † Minimal lumen area; ‡ Minimal stent area

Park S et al. J Am Heart Assoc 2012;
Comparison of Simple and Complex Stenting Techniques in the Treatment of Unprotected Left Main Coronary Artery Bifurcation Stenosis

Young-Hak Kim, MD, PhD, Seong-Wook Park, MD, PhD, Myeong-Ki Hong, MD, PhD, Duk-Woo Park, MD, Kyoung-Min Park, MD, Bong-Ki Lee, MD, Jong-Min Song, MD, PhD, Ki-Hoon Han, MD, PhD, Cheol Whan Lee, MD, PhD, Duk-Hyun Kang, MD, PhD, Jae-Kwan Song, MD, PhD, Jae-Joong Kim, MD, PhD, and Seung-Jung Park, MD, PhD*

Quantitative angiographic analysis results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Simple Group (n = 69)</th>
<th>Complex Group (n = 49)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with follow-up angiogram</td>
<td>57 (85.1%)</td>
<td>41 (83.7%)</td>
<td>0.837</td>
</tr>
<tr>
<td>Acute gain (mm)</td>
<td>-0.04 ± 0.66</td>
<td>1.26 ± 0.60</td>
<td><0.001</td>
</tr>
<tr>
<td>Late loss (mm)</td>
<td>0.20 ± 0.59</td>
<td>0.69 ± 0.72</td>
<td><0.001</td>
</tr>
<tr>
<td>Restenosis</td>
<td>3 (5.3%)</td>
<td>7 (17.7%)</td>
<td>0.089</td>
</tr>
<tr>
<td>Overall restenosis</td>
<td>3 (5.3%)</td>
<td>10 (24.4%)</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Kim HK. Am J Cardiol 2006;97:1597-1601
Rotterdam's RESEARCH and T-SEARCH Registries: similar MACE and TVR rates

Left main- $n = 94$ (single stenting: 48; two-stents: 46)

Valgimigli M. Am Heart J 2006;152(5):896-802
Independent predictors of 2-year MACE in patients with bifurcations versus those with ostial and midshaft lesions.
1stent vs 2 stents

French Left Main Taxus Registry: Five-Year Outcomes

D. Mylotte et al, EuroIntervention, 2012 (ahead of publication)

- Single Stenting Cross Over is Clearly Better than two stents in LM Bifurcation
- This approach can be performed in nearly 65% of patients with Distal Lm Disease
MACCE LM Distal PCI Bifurcations: 1 vs 2 stents
Main Compare

Multivariate Predictors of In-Stent Restenosis

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR, 95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.41 (0.24-0.69)</td>
<td>0.007</td>
</tr>
<tr>
<td>Restenotic lesion</td>
<td>4.59 (2.40-8.77)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bifurcation involvement</td>
<td>2.56 (1.27-5.19)</td>
<td>0.009</td>
</tr>
<tr>
<td>Complex stenting with 2 stents in bifurcation lesion</td>
<td>2.50 (1.28-4.76)</td>
<td>0.007</td>
</tr>
<tr>
<td>Total number of stents</td>
<td>4.76 (2.94-7.67)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Compared with simple cross-over stenting of distal bifurcation lesions

Lee et al. JACC Intervent 2011
Impact of Bifurcation Lesion and Number of Stents on Outcomes: ISAR LEFT Main

607 pts undergoing ULMCA PCI
39% with true bifurcation lesions

A

ISR

\[\% \ P = 0.008 \quad P = 0.005 \]

B

TLR

\[P < 0.001 \quad P = 0.005 \]

Tiroch et al, JACC CV Intv 2014
Single-stent crossover technique from distal unprotected left main coronary artery to the left circumflex artery.

Abstract

OBJECTIVES:
To report the clinical outcomes of single-stenting from distal unprotected left main coronary artery (LMCA) to the left circumflex artery (LCx).

BACKGROUND:
Percutaneous coronary intervention of distal LMCA is usually performed by stenting into the left anterior descending artery (LAD). In some cases, stenting from LMCA to LCx alone is performed.

METHODS:
Between April 2002 and April 2011, single-stenting with drug-eluting stents for distal unprotected LMCA disease was performed in 584 patients. Thirty-one patients underwent LMCA-LCx stenting, who were compared with the remaining 553 LMCA-LAD stented patients.

RESULTS:
At 3-year follow-up, there were no significant differences between LMCA-LCx and LMCA-LAD stenting groups in major adverse cardiac events (24.1% vs. 19.6%; P = 0.540), cardiac death, and myocardial infarction. A trend toward higher target lesion revascularization (TLR) in the LMCA-LCx stenting group was noted. This was significant when the stented branch was only considered (18.2% vs. 3.0%; P < 0.001). In both TLR subgroups, LCx ostium was frequently involved (83.3% in LMCA-LCx vs. 66.2% in LMCA-LAD TLR subgroups; P = 0.39). The LAD ostium was more frequently involved in LMCA-LCx TLR subgroup (83.3% vs. 21.0%; P < 0.001). On the multivariable Cox regression analysis, LMCA-LCx stenting was an independent predictor of TLR for restenosis at the ostium of the stented branch (HR 6.49; 95% CI 2.27-18.53; P < 0.001).

CONCLUSIONS:
TLR rate at the LCx ostium is high irrespective of LMCA-LCx or LMCA-LAD stenting. The former also seems to be associated with high TLR at the LAD ostium. It may therefore be important to evaluate alternative strategies for treating distal LMCA disease that extends into the LCx but not LAD.
ABSTRACT.

Aims: Percutaneous treatment of unprotected distal left main (UDLM) remains a challenging procedure for most interventional cardiologists, with different possible strategies.

Methods: From January 2005 to December 2010, 175 patients with isolated UDLM were treated at our centre with provisional technique. We compared patients who underwent LM-CX stenting with those who underwent LM-LAD stenting. The primary end-point was the long-term rate of major adverse cardiac events (MACE, i.e. the composite of death, myocardial infarction, repeated revascularization).

Results: 44 (26%) underwent LM-CX stenting and 131 (74%) LM-LAD stenting. The rate of MACE did not differ after 30 days (10.15% in the LM-LAD group vs 9.52% in the other; p=0.85), while after a follow up of a mean of 26 with 12, 38 months I quartile and III quartile respectively, it was higher although not significant in the LM-LAD group (40% in the LM-LAD group versus 26.2% in the LM-CX group p=0.09), mainly driven from more frequent revascularization (25.7% vs 11.9%;p=0.10). The ULM TLR rate wasn’t statistically significant (6.2% vs 0.0%; p=0.2).

Conclusions: Provisional distal left main bifurcation single stent treatment is a safe and effective therapeutic option, without differences in short and long-term outcome relatively to stenting to LAD or to circumflex.
P.M., 78 yrs Male

January 7, 2013: NSTEMI, admitted with persistent chest pain and SBP 90 mmHg

Ostial and Shaft LM severely diseased and calcified + Prox LAD Disease

RCA: Normal
P.M., 78 yrs Male

January 7, 2013: NSTEMI, admitted with persistent chest pain and SBP 90 mmHg

Wiring all branches

Predilatation with NC Balloon
P.M., 78 yrs Male

January 7, 2013: NSTEMI, admitted with persistent chest pain and SBP 90 mmHg

Predil. LM, prox LAD - Stenting Prox LAD and LM - Post-Dil and FKB
P.M., 78 yrs Male

January 7, 2013: NSTEMI, admitted with persistent chest pain and SBP 90 mmHg

Final Result
T.F, 65 yrs Male

February 12, 2012: Angina CCS III, positive stress test at low load - Admitted for elective coronary angiography

Isolated Distal LM Stenosis

.. with normal RCA

Focal lesion at distal LM (1,0,0 – Medina)
T.F, 65 yrs Male

February 12, 2012: Angina CCS III, positive stress test at low load- Admitted for elective coronary angiography

- Wires in all branches
- Predilat. with balloon on Ramus wire
- Exchange wires to LAD and LCX: FKB (only the distal tip of balloons are outside on the stent)
T.F, 65 yrs Male

February 12, 2012: Angina CCS III, positive stress test at low load - Admitted for elective coronary angiography

Final Angiographic Result

12-month Angiographic FU
Final Kissing?

- If TIMI flow < III
- FFR < 0.80
Provisional T stenting for distal Left Main at 10 yrs ...

N. M, female, 69 yrs
Final Remarks

- Good rules to obtain optimal results with LM stenting:
 - Use DES: safe and effective
 - Use provisional T-stenting strategy
- Conservative strategy regarding the selected side branch
- Consider stenting across LAD if this increases the chances of ending up with only one stent...
- Provisional T-Stenting represents a safe and effective strategy for the percutaneous treatment of left main lesions with DES.
Thank you for your attention