

19th Cardiovascular Summit TCTAP 2014

Contemporary Stent Designs: How to Customize It to Make It Better?

Real World Practice Sharing (Promus Premier)

Dr Tan Huay Cheem

MBBS, M Med(Int Med), FRCP(UK), FAMS, FACC, FSCAI Director, National University Heart Centre, Singapore (NUHCS) Associate Professor of Medicine, Yong Loo Lin School of Medicine National University of Singapore President, Asia Pacific Society of Interventional Cardiology

Promus PREMIERTM Stent

 Promus PREMIER utilises the same platinum chromium alloy, stent geometry, drug and polymer as the Promus ELEMENT Stent

 <u>Delivery system includes a shorter</u> catheter tip to improve tip flexibility,
 PTFE hypotube coating to reduce friction and a <u>red tip to improve</u> visibility when loading the SDS on a guidewire <u>Increased resistance to longitudinal compression:</u>
Connectors added to the 2 most proximal stent segments of the small workhorse (2.50-2.75mm), workhorse (3.0-3.5 mm) and large vessel (4.0 mm) stent

Element/OMEGA/ION design	Promus PREMIER design
The 2.5, 2.75, 3.0, 3.5 and 4.0	The 2.5, 2.75, 3.0 and 3.5 mm
mm stents have 2 connectors	stents have 4 connectors between
between segments at the	segments at the proximal end; the
proximal end	4.0 mm stent has 5 connectors

PREMIERTM Resistance to Compression Similar to XienceTM and ResoluteTM

Tested in a second generation bench test designed to mimic clinical longitudinal stent distortion (point compression with 0.5N force)

Stent is fixed distally (below red line) and malapposed proximally \rightarrow Instron applies 0.5N force via a rod \rightarrow Stent is compressed on side of force and displaced \rightarrow Instron measures force and distance compressed

NG PROMUS Clinical Trial: 30-Day Clinical Outcomes

(100 patients enrolled in 9 sites (New Zealand, Singapore, Australia)

Presented by John Ormiston PCR 2013 NUS National University Health System

SYNERGYTM vs Promus PREMIERTM Everolimus-Eluting Platinum Chromium Coronary Stent System

• Biodegradable polymer

• Thinner struts

Shorter tip

Bioabsorbable Coatings in Perspective *Relative Polymer and Drug Absorption Profiles*

SYNERGY has the Only Polymer to Absorb Shortly After Drug Elution Ends at 3 Months

SYNERGYTM II Stent

Even with Thin Struts the High Density of Platinum Chromium Allows for Greater Visibility*

	SYNERGY II Stent	Promus PREMIER™ Stent	PROMUS Element™ Stent	Resolute Integrity TM Stent	XIENCE TM Xpedition Stent	BioMatrix™ Stent	Nobori™ Stent	Orsiro™ Stent	ABSORB TM BVS Stent
Alloy	PtCr	PtCr	PtCr	CoNi	CoCr	Stainless Steel	Stainless Steel	CoCr	PLLA Polymer
Strut Thickness	74 µm*	81 µm	81 µm	89 µm	81 µm	120 µm	120 µm	60 µm	150 µm

*Strut thickness for small vessel model is 74μm, Workhorse model is 79μm and large vessel is 81μm.

3

National University Health System

SYNERGY™ II Stent System Delivery System Overview

- Hypotube extends into midshaft to exit port to improve pushability
 10% longer than existing BSC monorail hypotube designs
- Additional length laser cut to maintain midshaft flexibility
 - Variable pitch intermittent laser cuts (~360 cuts over 100mm length)
- Low profile
- Shorter, more flexible tip

National University Health System

SYNERGYTM II Stent System Labeled Post-Dilatation Limits*

Case Example

- F/72 CVRF hypertension, hyperlipidemia
- Angina pectoris. MPI showed mid LAD ischemia

PROMUS PREMIERTM Case Study

Premier 2.25x32mm Stent

PROMUS PREMIERTM Case Study

PROMUS PREMIERTM Case Study

SYNERGY™ Stent: Introduced to Singapore on Christmas Day 2012

Case Example

- 47-yr-old man. VF collapse from anterior MI while playing badminton.
- CPR and DC shock enroute to hospital in ambulance
- In cardiogenic shock

Two CoCR Stents Implanted in LAD Artery

Final Angiography Results

Clinical Course

- Intra-aortic balloon pump
- Hypothermia therapy
- Stayed in CCU for a week
- Discharged on Day 13. Full neurological recovery
- Two-dimensional echocardiogram showed mild left ventricular systolic dysfunction. LVEF 42%

Elective Staged PCI to LCx

Synergy [™] 2.75x16mm Stent

SYNERGY[™] 2.25x38mm stent

SYNERGY[™] 3.0x38mm stent

SYNERGY[™] 3.5x38mm stent

Post-dilation Sapphire NC 3.5x18mm balloon

Conclusions

- Modification of stent geometry and design answers clinical needs for improved longitudinal strength and reduced risk of stent deformation. Thinner stent struts and stent delivery system enhances deliverability and flexibility but with ? reduced radiopacity
- Bioabsorbable polymer design potentially enhances the safety of Synergy[™] DES with no risk of chronic inflammation and late stent thrombosis. Allows for shortened duration of dual antiplatelet therapy but this needs to be validated in clinical studies
- Early experience with Synergy[™] suggests comparable efficacy to other drugeluting stents with no safety concerns related to the novel stent design and biodegradable polymer

