Imaging & Physiology Summit FFR Workshop

HYPEREMIA

Seoul, Korea, december 6th, 2013

Nico H. J. Pijls, MD, PhD Catharina Hospital, Eindhoven, The Netherlands

Is Hyperemia Essential ??

Correct Classification of Ischemic Stenosis

Is Hyperemia Essential ??

Yes, it is !!

Session tomorrow morning 10 AM

MAXIMUM VASODILATORY STIMULI

!! Maximum hyperemia is paramount !!

 PAPAVERINE i.c. • ADENOSINE i.c. ADENOSINE i.v. infusion • ATP i.c • ATP i.v. REGADENOSON i.v. bolus

Intracoronary Papaverine

- cheap, globally available
- peak hyperemia sets-on after 30-45 sec and lasts for 30 seconds – 1 min
- always T-wave abnormalities, seldom TDP, VT
- dosage : 12 mg in RCA 20 mg LCA

• PULL-BACK CURVE generally possible

Intracoronary Bolus of Papaverine 20 mg

Intracoronary Adenosine

•frequently used by starting centers, very safe and cheap

•But.... Also most tricky

•Very short hyperemia → often overestimation of FFR

 Dosage often too low: use at least - 60 μg in LCA - 40 μg in RCA
(Catharina Hosp: "double untill no add effect")

•No PULL-BACK CURVE

Reproducibility of Coronary Pressure

Intravenous Adenosine

- 140 ug /kg/min preferably infusion by femoral or other central vein
- Extremely accurate; steady state within 1 2 min maximum hyperemia in 99 % of all patients
- Burning, angina-like chest pain or feeling of dyspnoea. *HARMLESS* !!!
- Decrease of blood pressure and increase of heart rate by 10-15%
- Avoid Valsalva manoeuvres (fluctuations)

Venous sheath into femoral vein

Adenosine for i.v. infusion

(standard bag 200 mg = 100 ml)

Infusion rate simply adjusted according to body weight (....kg →ml/min)

- no preparation in the lab
- no difficult calculations
- no risk of dosage error
- no loss of time
- very cheap (can be made in the hospital pharmacy in many countries)

advance pressure wire through stenosis and *induce hyperemia* → FFR

FFR LAD (i.v. adenosine) = 0.66 ----- need for stent

Make pullback recording for optimal information

Pull-back recording for detailed spatial information about distribution of lesions along the complete artery

Stent has been placed: LAD after stenting

measurement of *FFR after stenting* to assess result FFR = 0.94

At the end, when sensor is back at tip of guiding catheter, verify *absence of drift*

Single bolus i.v. regadenoson

- newer and reliable stimulus
- single bolus 400 microgram, either in central or peripheral vein (equally effective)
- hyperemia identical to central venous adenosine infusion
- no side effects, except the "well-known" innocent chest pain
- hyperemic plateau very variable : 20 sec 10 min
- price: ~ 70 Euro/pat

central venous adenosine Infusion 140 µg/kg/min

Single bolus Peripheral Injection of 400 µg of regadenoson

peripheral single bolus injection of 400 µg of regadenoson

Regadenoson vs Adenosine (N=100)

Mean Difference 0.00 ± 0.01

More about Regadenoson: tomorrow morning at 09.40 a.m.

Importance of Maximum Hyperemia (3):

If in doubt:

- higher dosage of stimulus (i.c. adenosine up to 80 μ g RCA; \geq 120 μ g LCA)
- other route (i.v. adenosine instead of i.c.)
- other drug (papaverine 12 mg RCA; 20 mg LCA
- regadenoson 400 microgr as i.v. bolus*)
- i.c. adenosine on top of i.v. adenosine

Circulation 2003; 107: 1877-1883 Circulation 2014; submitted

<u>Hybrid Approach ??</u>

- If Pd/Pa at rest (or comparable indices, like iFR) is ≤ 0.80, as a matter of fact FFR will also be ≤ 0.80 and hyperemia in itself is not strictly mandatory to decide upon inducible ischemia
- but without hyperemia, you cannot make a meaningful *pull-back recording* and you are loosing a lot of valuable information
- and without hyperemia and FFR, you cannot judge how much a patient improved by stenting: you don't know where you came from ("did FFR go from 0.78 to 0.91 or from 0.65 to 0.91 ?")

You lose a lot of valuable information in a lot of patients

→ further discussed tomorrow 10 AM

<u>HYPEREMIC STIMULI: SUMMARY:</u>

- number of reliable and safe hyperemic stimuli
- <u>adenosine</u>: 1- or 2-vessel focal disease without diffuse disease (*i.c. bolus*)
- <u>regadenoson</u>: 1- or 2-vessel disease with diffuse disease, (*i.v. bolus*) tandem lesions, straightforward bifurcations <u>papaverine</u> with necessity of 1 or 2 pullback recordings; (*i.c. bolus*) "ad hoc" FFR during radial procedure
- <u>central i.v. adenosine</u>: more complex disease with multiple lesions, diffuse disease, necessity of repeated pullback recordings
 - ATP ~ adenosine

Why to go for less than 95 % certainty ? Just to avoid adenosine ? Is it so cumbersome to create maximum hyperemia ?

Central & Peripheral Regadenoson

Mean Difference 0.00 ± 0.01

Mean Difference 0.00 ± 0.02

Presentation of this study: tomorrow morning at 09.40 a.m.

Reproducibility of Regadenoson

Mean Difference 0.01 ± 0.02

Presentation of this study: tomorrow morning at 09.40 a.m.

Adenosine (central venous infusion) vs Regadenoson for maximum hyperemia (100 patients)

