IVUS-guided CTO intervention

Byeong-Keuk Kim, MD, PhD

Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul, Korea

For wire-crossing

Pre-stenting use

Post-stenting use

For Wiring

- For the stumpless CTO lesions, IVUS guidance has been reported to lead a higher success rate.
 - 1) useful in revealing the entry point of occlusion.
 - 2) useful in repositioning a guidewire in the event of inadvertent subintimal passage. *Park et al. Int J Cardiol 2009*

Pre-stenting; information for optimal stenting

- Accurate information regarding vessel size in CTO
- Determination of lesion length, covered by stents
- Evaluation of the characteristics of plaques
- Evaluation of the complications of CTO intervention such as dissection, hematoma, or vessel rupture
- Exact determination of the location of guidewire; true or false ?

Post-stenting; IVUS for the optimal stenting

Yoon & Hur. KJIM 2012

Evaluation of the optimal expansion of stents

- Prevention of stent underexpansion
- Improvement of stent eccentricity
- Evaluation of the reference segment, especially CTO distal segment
- Evaluation of the mechanical problems of stents in CTO lesions

- CC: chest pain
- Risk factor: DM (10yrs, Insulin), HTN (10yrs)
- Echo : EF=44%, RWMA at LAD territory (hypokinesia without thinning)

Diagnostic c-angio; LAD CTO

Successful guidewire-crossing by antegrade approach

Pre-dilation from distal to mid-LAD

• Diffusely narrowing LAD from proximal to distal, TIMI=2

IVUS evaluation on LAD

macount

Two Resolute Integrity (2.75 x 26 & 2.5 x 30 mm) implantation on the m-LAD-lesion

IVUS evaluation for d-LAD-lesion !

Finished the procedure without stenting or ballooning ... Final angiography

 A lack of evidence regarding the "the beneficial role of IVUS-guided CTO intervention using current-generation DES for the improved clinical outcomes" after stent implantation.

Usefulness of Intravascular Ultrasound Guidance in Percutaneous Coronary Intervention With Second-Generation Drug-Eluting Stents for Chronic Total Occlusions (from the Multicenter Korean-Chronic Total Occlusion Registry)

SEVERANCE CARDIOVASCULAR HOSPITAL

Hong SJ & Kim BK, et al. Am J Cardiol 2014;114:534-40.

IVUS-guidance vs. Angiography-guidance in 201 propensity score-matched pairs

Limitation

Non-randomized, retrospective study

Based on these registry data, we performed randomized CTO trial.

Randomized CTO-IVUS study

Coronary Interventions

Clinical Impact of Intravascular Ultrasound–Guided Chronic Total Occlusion Intervention With Zotarolimus-Eluting Versus Biolimus-Eluting Stent Implantation Randomized Study

Byeong-Keuk Kim, MD; Dong-Ho Shin, MD; Myeong-Ki Hong, MD; Hun Sik Park, MD; Seung-Woon Rha, MD; Gary S. Mintz, MD; Jung-Sun Kim, MD; Je Sang Kim, MD; Seung-Jin Lee, MD; Hee-Yeol Kim, MD; Bum-Kee Hong, MD; Woong-Chol Kang, MD; Jin-Ho Choi, MD; Yangsoo Jang, MD; for the CTO-IVUS Study Investigators*

- Background—There have been no randomized studies comparing intravascular ultrasound (IVUS)-guided versus conventional angiography-guided chronic total occlusion (CTO) intervention using new-generation drug-eluting stent Therefore, we conducted a prospective, randomized, multicenter trial designed to test the hypothesis that IVUS-guided CTO intervention is superior to angiography-guided intervention.
- Methods and Results—After successful guidewire crossing, 402 patients with CTOs were randomized to the IVUS-guided group (n=201) or the angiography-guided group (n=201) and secondarily randomized to Resolute zotarolimus-eluting stents or Nobori biolimus-eluting stents. The primary and secondary end points were cardiac death and a major adverse cardiac event defined as the composite of cardiac death, myocardial infarction, or target-vessel revascularization, respectively. After 12-month follow-up, the rate of cardiac death was not significantly different between the IVUS-guided group (0%) and the angiography-guided group (1.0%; P by log-rank test=0.16). However, major adverse cardiac event rates were significantly lower in the IVUS-guided group than that in the angiography-guided group (2.6% versus 7.1%; P=0.035; hazard ratio, 0.35; 95% confidence interval, 0.13–0.97). Occurrence of the composite of cardiac death or myocardial infarction was significantly lower in the IVUS-guided group (0%) than in the angiography-guided group (2.0%; P=0.045). The rates of target-vessel revascularization were not significantly different between the 2 groups. In the comparison between Resolute zotarolimus-eluting stent and Nobori biolimus-eluting stent, major adverse cardiac event rates were not significantly different (4.0% versus 5.7%; P=0.45).
- Conclusions—Although IVUS-guided CTO intervention did not significantly reduce cardiac mortality, this randomized study demonstrated that IVUS-guided CTO intervention might improve 12-month major adverse cardiac event rate after new-generation drug-eluting stent implantation when compared with conventional angiography-guided CTO intervention. Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01563952.

SEVERANCE CARDIOVASCULAR H

(Circ Cardiovasc Interv. 2015;8:e002592. DOI: 10.1161/CIRCINTERVENTIONS.115.002592.)

Randomized CTO-IVUS study

Objective

To test the hypothesis ...

"IVUS-guided CTO intervention is superior to conventional angiography-guided CTO intervention"

Presented at 2014 TCT First-investigation session

Procedural summary for CTO intervention

	IVUS-guided (n=201)	Angiography- guided (n=201)	p Value
Procedure success	199 (99.0%)	197 (98.0%)	0.411
Femoral artery access	149 (74.1%)	145 (72.1%)	0.653
Contralateral angiogram	101 (50.2%)	92 (45.8%)	0.369
Retrograde approach	14 (7.0%)	19 (9.5%)	0.364
Total number of stents, n	1.7 ± 0.8	$\textbf{1.6} \pm \textbf{0.7}$	0.198
Mean stent diameter, mm	2.91 ± 0.52	$\textbf{2.85} \pm \textbf{0.41}$	0.228
Total stented length, mm	43.6 ± 18.7	41.5 ± 17.6	0.245
High-pressure post-stent dilation	103 (51.2%)	83 (41.3%)	0.045
Maximum post-stent balloon pressure, atm	14.6 ± 3.7	13.8 ± 3.8	0.040
Total procedure time, min	95 ± 50	88 ± 47	0.167
Total fluoroscopic time, min	41 ± 26	37 ± 24	0.155
Total contrast volume used, mL	299 ± 128	295 ± 123	0.728

Quantitative & qualitative angiographic analyses

	IVUS-guided (n=201)	Angiography-guided (n=201)	p Value
Length of CTO, mm	26.8 ± 17.3	26.4 ± 17.6	0.860
Total lesion length, mm	36.3 ± 17.1	35.5 ± 17.0	0.615
Pre-procedural Reference vessel diameter, mm	$\textbf{2.69} \pm \textbf{0.44}$	$\textbf{2.64} \pm \textbf{0.55}$	0.346
Post-procedure			
Reference vessel diameter, mm	2.92 ± 0.39	2.86 ± 0.45	0.144
Minimum luminal diameter, mm	2.64 ± 0.35	2.56 ± 0.41	0.025
Percent diameter stenosis, %	9.0 ± 9.8	10.2 ± 10.9	0.272
Stent edge dissection	18 (9.0%)	27 (13.4%)	0.155

Post-procedural QCA according to the range of diseases segment

QCA within whole diseased segment

COLLEGE OF MEDICINE

QCA at CTO segments

		IVUS-guided (n=201)	Angiography-guided (n=201)	p Value			
Pre-procedure							
	Reference vessel diameter, mm	2.69 ± 0.44	2.64 ± 0.55	0.346			
<u>P</u>	Post-procedure						
Whole diseased segments							
	Reference vessel diameter, mm	2.92 ± 0.39	2.86 ± 0.45	0.144			
	Minimum luminal diameter, mm	2.64 ± 0.35	2.56 ± 0.41	0.025			
	Percent diameter stenosis, %	9.0 ± 9.8	10.2 ± 10.9	0.272			
CTO segments							
	Minimum luminal diameter, mm	2.81 ± 0.37	2.69 ± 0.42	0.004			
	Percent diameter stenosis, %	3.3 ± 10.9	5.3 ± 12.5	0.095			

Primary endpoint (Cardiac death, MI, ST, or TVR)

*Not calculable HR or CI because of no occurrence of the event

Two DESs 2.75 x 26 & 2.5 x 30 mm Resolute Integrity implantation

One more stent?

After IVUS, we finished case without stenting.

SEVERANCE CARDIOVASCULAR HOSPITAL

"Cross-over" in CTO-IVUS trial ... raise the concerns regarding protocol-violation.

- IVUS use in the inevitable cases had to be allowed for the safety concerns (... cross-over into IVUS guidance).
 - These might reflect the "True incidence of inevitable use of IVUS during CTO intervention" in the real world practice.

Cross-over rate in CTO-IVUS trial

Primary endpoint (Cardiac death, MI, TVR)

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

Per-protocol Analysis

Cardiac death or MI

TVR

Take-home message - I

 Besides the higher success by IVUS guidance for CTO intervention, Our registry data and randomized study confirmed that IVUS-guided CTO intervention could improve clinical outcomes after 2ndgeneration DES.

Take-home message -II

Potential advantages of IVUS-guided CTO intervention;

- Prevention of stent underexpansion and optimal expansion (higher use of high-pressure dilation and larger postprocedural MLD)
- Detection of procedure-complication and determination of further management (dissection or hematoma ...)
- → causing "optimal stenting"

Use of IVUS might be necessarily needed for the next safe proceeding procedures and the improvement of clinical outcomes after stent implantation.

Thank you for your attention

CTO Seoul Camp 2016 Grand Ballroom, Grand Hilton Hotel, Seoul, Korea

Grand Ballroom, Grand Hilton Hotel, Seoul, Korea Cardiovascular Research Center, Interventional Cardiologists

Save the Data 2016 CTO Seoul Camp 2016. 3. 11 (Fri) ~ 2016 3. 12 (Sat)

SEVERANCE CARDIOVASCULAR HOSPITAL