TCTAP 2016 April 26th – April 29rd, 2016 Complex PCI I Left Main, Bifurcation, and Multivessel PCI

FFR-guided Bifurcation Treatment

: Treat-or-Not Treat and Bifurcation Techniques

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

Which is the most useful for this side branch?

Jailed diagonal branch after LAD stenting

- 1. Angiography
- 2. IVUS
- 3. OCT

4. FFR

Answer) 1. Angiography

Angiographic evaluation for side branch

The 1st step should be the assessment of myocardial territory supplied by the branch. Only the branch that supplies large amount of myocardium deserves any further assessment and intervention.

FFR in bifurcation lesions

Pre-intervention: Treat-or-Not Treat?

After main branch stent implantation

During and After side branch intervention

Why "FFR" for bifurcation lesions?

Pitfalls of anatomical evaluation

- Angiography
 - Single directional assessment
 - Variability in stenosis assessment
 - No validated criteria for intervention
 - Not physiologic

IVUS/OCT

- Difficult to perform in tight stenosis
- No validated criteria for intervention
- Not physiologic

Uniqueness of side branch lesions

- Various size, various amount of myocardium
- Side branch stenosis is unique and complex
 - Underlying plaque → Eccentric
 - Remodeling → Negative remodeling
 - Complex mechanisms of side branch jailing

Carina shift, plaque shift, stent struts, thrombus.....

Koo BK & de Bruyne B, Eurointervention 2010

Bifurcation lesion?

- Treat-or-Not Treat?
- How to Treat?

Role of IVUS? OCT?

Why FFR?

Diagnostic accuracy of anatomic parameters in pure SB ostial lesions

Koh JS, Koo BK, et al., JACC Intv, 2012

Prediction of jailed SB FFR?

Pre-intervention side branch FFR is not that helpful to predict jailed side branch FFR.

FFR in bifurcation lesions

Pre-intervention

After main branch stent implantation

During and After side branch intervention

Treat-or-Not Treat?

Side branch angioplasty ?

Different criteria from different studies.....

FFR-guided concept for Side branch

Journal of the American College of Cardiology © 2005 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 46, No. 4, 2005 ISSN 0735-1097/05/\$30.00 doi:10.1016/j.jacc.2005.04.054

In Jailed side branch lesions, Angiographic severity ≠ Presence of ischemia

Jailed Diagonal branch FFR 0.81

No perfusion defect

Anatomical severity **\u0357** Functional significance

FFR vs. % diameter stenosis in Jailed side branches

Bellenger, et al. Heart 2007

FFR in bifurcation lesions

Pre-intervention

After main branch stent implantation

During and After side branch intervention

Angiographic vs. FFR changes during PCI

(61 0.77 21.00

After MB stenting

After kissing balloon

SB stent implantation?

Side branch stenting ?

Different criteria from different studies.....

18

Angiographic vs. FFR changes during PCI

Functional outcome of Jailed side branches

Functional outcome of Jailed side branches

Lee JM..... Koo BK, Eurointervention 2015

ו 2011 ו

FFR after complex Left main stenting

Functionally complete revascularization

FFR-guided vs. Angio-guided SB intervention

Nine months clinical outcomes

	FFR-guided group	Angio-guided group	Ρ
	N=108*	N=108**	
Side branch PCI	30%	45%	0.02
TVR	5 (4.6%)	4 (3.7%)	0.7
MI	0	0	1
Cardiac death	0	0	1

* 1 non-cardiac death, 1 follow-up loss, ** 2 follow-up loss

More intervention, More clinical event

SMART STRATEGY

Target vessel failure at 3 years

Gwon HC, et al. JACC interv 2016

Chen SL, et al. JACC interv 2015

FFR in Bifurcation lesion

- Bifurcation lesion is unique and different from the other stenoses.
- Anatomical evaluations (QCA, IVUS, OCT.....) have pitfalls in the evaluation of bifurcation lesions and cannot tell the functional significance.
- FFR is useful in bifurcation lesions from the beginning till the end of bifurcation PCI and its use can reduce unnecessary complex interventions and their complications.