Complex PCI II. Latest Data on Revascularization: Insights from Patient-Level Meta-Analysis of the SYNTAX, PRECOMBAT and BEST Trials

PCI vs. CABG for LM Disease: New Insights From SYNTAX and PRECOMBAT

Patrick W. Serruys, MD, PhD
Rafael Cavalcante, MD, PhD
Yoshinobu Onuma, MD, PhD

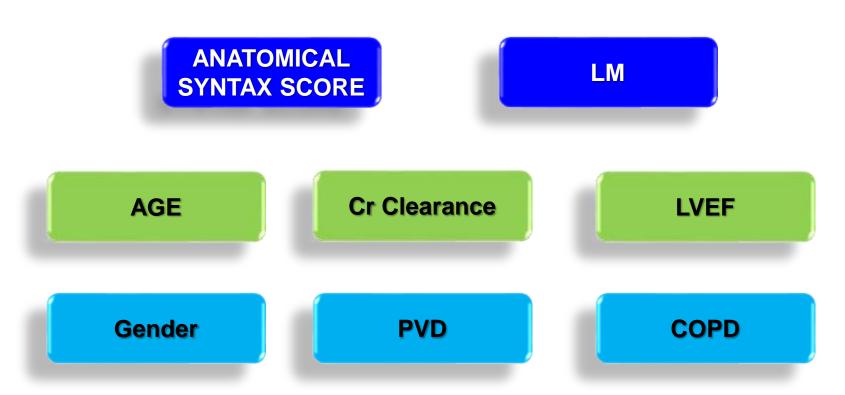
Imperial College London, United Kingdom Erasmus Medical Center, Rotterdam, The Netherlands

European Guidelines for Myocardial Revascularization

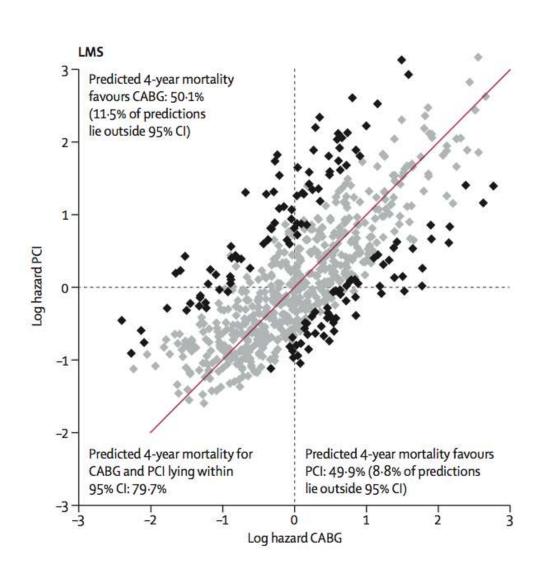
Recommendations according to extent of CAD	CABG		PCI	
	Classa	Level ^b	Classa	Level ^b
Left main disease with a SYNTAX score ≤ 22.	1	В	1	В
Left main disease with a SYNTAX score 23-32.	1	В	lla	В
Left main disease with a SYNTAX score >32.	- 1	В	III	В

Classes of recommendations	Definition	Suggested wording to use	
Class I	Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective.	Is recommended/is indicated	
Class II	Conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of the given treatment or procedure.		
Class IIa	Weight of evidence/opinion is in favour of usefulness/efficacy.	Should be considered	
Class IIb	Usefulness/efficacy is less well established by evidence/opinion.	May be considered	
Class III	Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.	Is not recommended	

Level of evidence A	Data derived from multiple randomized clinical trials or meta-analyses.		
Level of evidence B	Data derived from a single randomized clinical trial or large non-randomized studies.		
Level of evidence C	Consensus of opinion of the experts and/ or small studies, retrospective studies, registries.		


SYNTAX Score II

Findings that were validated in the multinational DELTA Registry...


SYNTAX Score II Variables

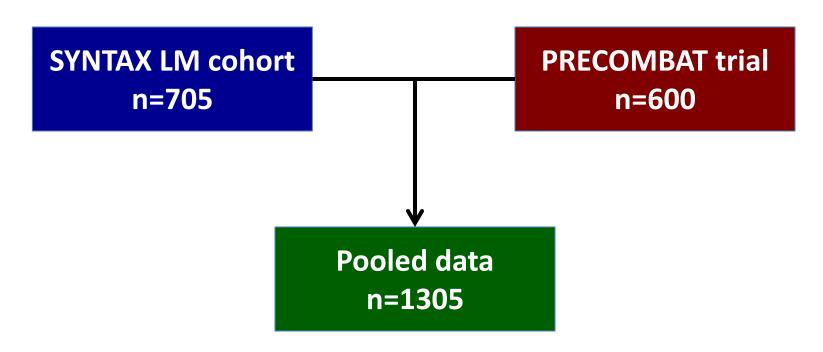
SYNTAX Score II was developed by applying a Cox proportional hazards model to the results of SYNTAX trial obtaining a combination of clinical and anatomical independent predictors of 4 years all-cause mortality:

1. Farooq V et al. Lancet 2013; 381: 639-50

SYNTAX trial LM cohort

Favored CABG

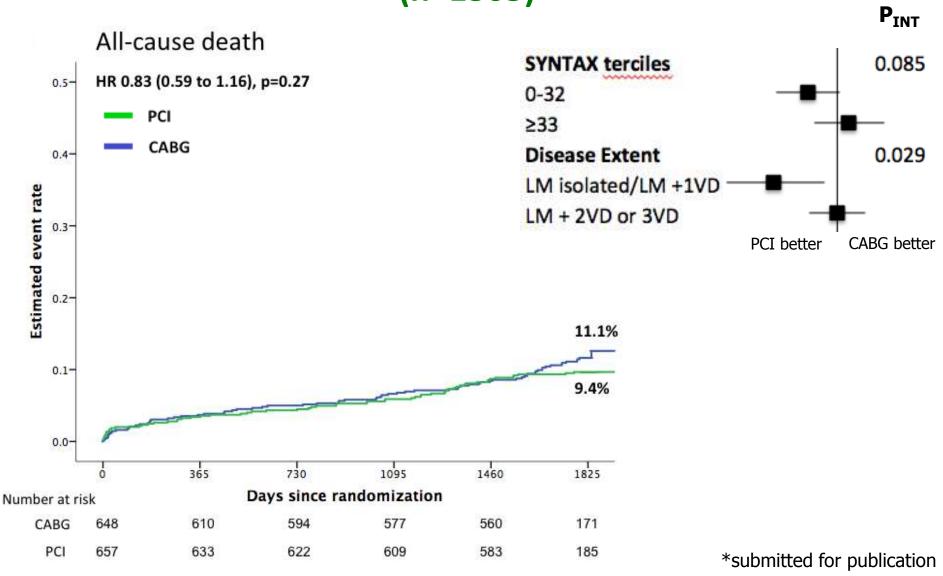
Overall 50.1% >95%CI 11.5%

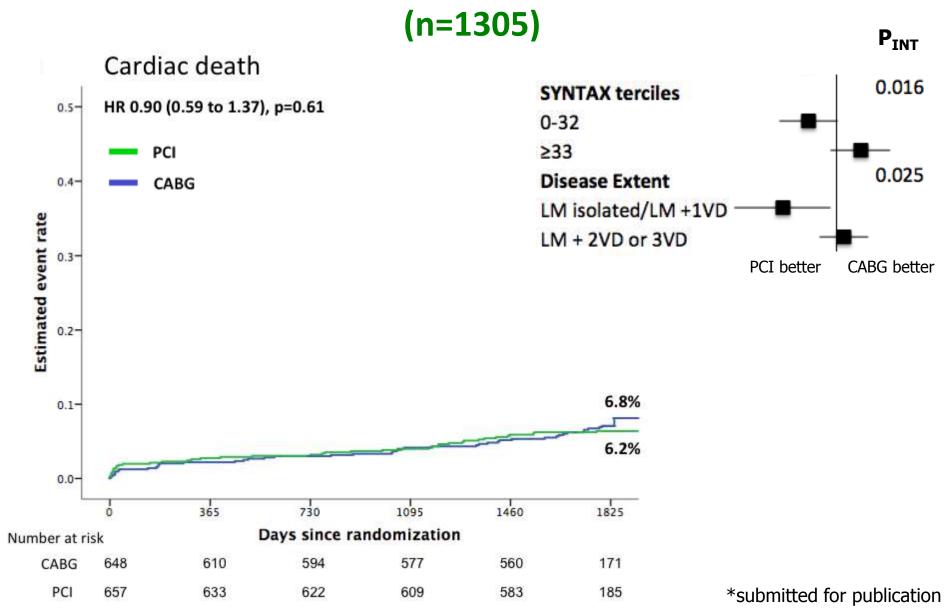

Favored PCI

Overall 49.9% >95%CI 8.8%

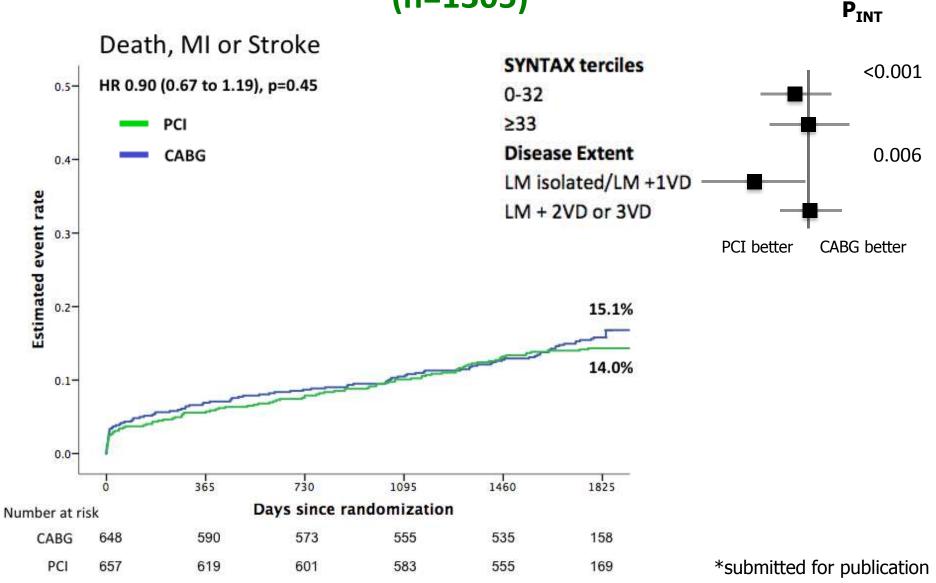
79.7% within 95%CI **Equipoise**

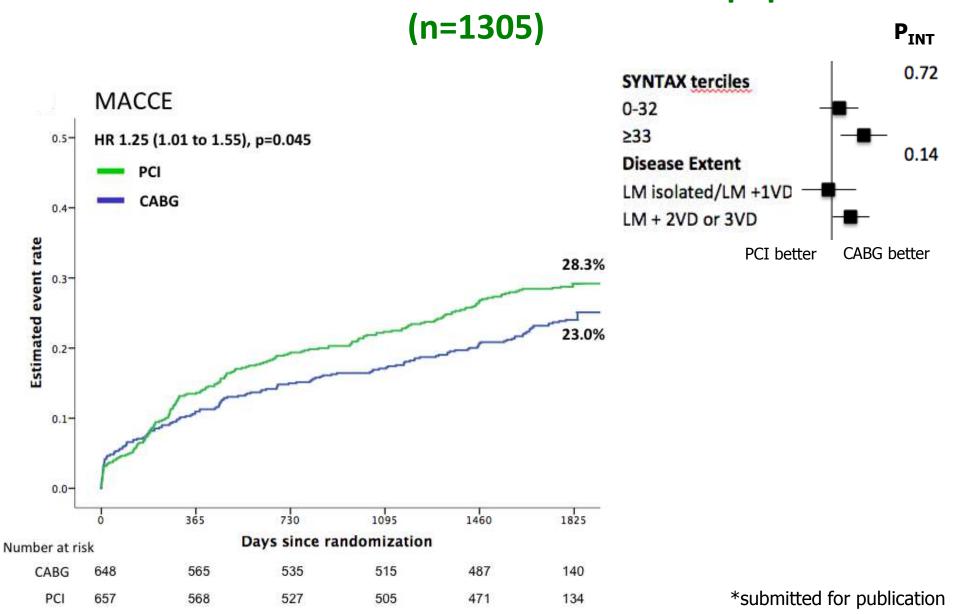
Long-Term Outcomes of Percutaneous Coronary Intervention and Coronary Artery Bypass Grafting in Patients with Left Main Coronary Artery Disease: A Pooled Analysis of Individual Patient Level Data From the SYNTAX and PRECOMBAT Randomized Trials


Rafael Cavalcante, Yohei Sotomi, Cheol W. Lee, Jung-Min Ahn, Vasim Farooq, Hiroki Tateishi, Erhan Tenekecioglu, Yaping Zeng, Pannipa Suwannasom, Carlos Collet, Felipe Albuquerque, Yoshinobu Onuma, Seung-Jung Park, Patrick W. Serruys

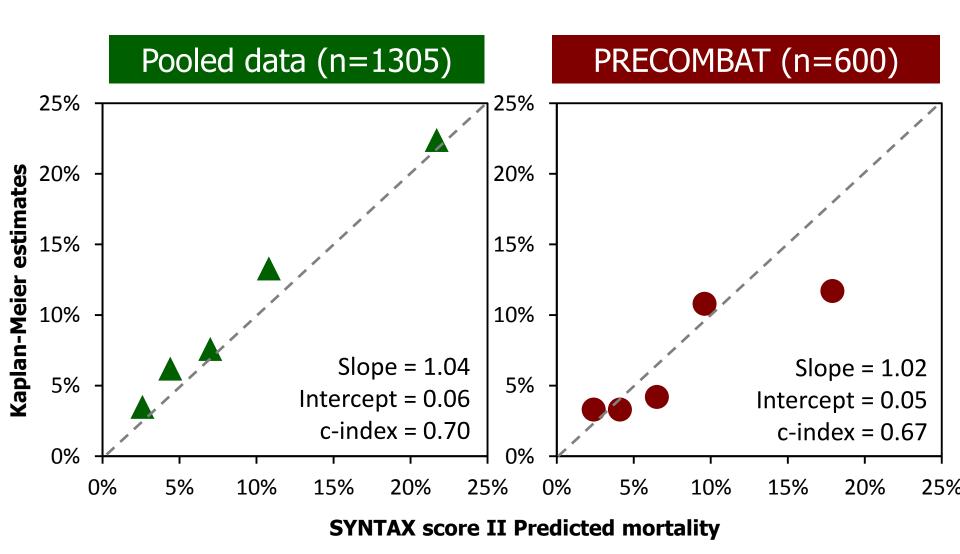

Baseline Characteristics

	PCI	CABG	р
	n=657	n=648	value
SYNTAX score	27.3±12.1	28.0±12.2	0.32
Age (years)	63.8±10.0	64.3±9.9	0.35
Creatinine Clearance (ml/min)	81.8±31.6	81.0±27.7	0.66
LVEF (%)	59.3±13.9	59.5±11.1	0.80
Male Gender	73.8%	76.2%	0.31
Peripheral vascular disease	7.9%	7.3%	0.65
COPD	5.3%	6.3%	0.44
Diabetes Mellitus	28.5%	27.6%	0.74
Body mass index (Kg/m²)	26.5±4.4	26.3±4.5	0.26
Dyslipidemia	63.3%	58.9%	0.10
Previous MI	17.4%	16.7%	0.72
Previous PCI	6.1%	6.3%	0.86
Previous stroke	3.9%	4.1%	0.93
Euroscore	3.3±2.5	3.4±2.5	0.47
Current smoking	23.3%	25.7%	0.31


5 years <u>All-cause Mortality</u> in Left Main CAD Pooled SYNTAX and PRECOMBAT Left Main population (n=1305)


5 years <u>Cardiac Mortality</u> in Left Main CAD Pooled SYNTAX and PRECOMBAT Left Main population

5 years <u>Death/MI/Stroke</u> in Left Main CAD Pooled SYNTAX and PRECOMBAT Left Main population (n=1305)



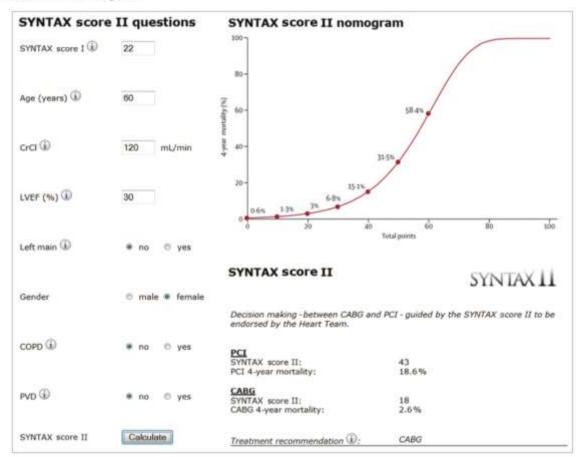
5 years <u>MACCE</u> in Left Main CAD Pooled SYNTAX and PRECOMBAT Left Main population

SYNTAX score II model Calibration plots

SYNTAX and **PRECOMBAT** Left Main population

Differences in SYNTAX and PRECOMBAT

- PRECOMBAT had less patients with COPD and PVD
 - COPD 8.6% in SYNTAX vs. 2.7% in PRECOMBAT
 - PVD 9.8% in SYNTAX vs. 3.7% in PRECOMBAT
- All-cause mortality in PRECOMBAT was half of that in SYNTAX
 - 12.2% in SYNTAX vs. 6.7% in PRECOMBAT
- PRECOMBAT included only Left-main disease and SYNTAX included 61% of 3-vessel disease
- Racial differences
- Procedural differences
 - Stent differences (CYPHER vs. TAXUS)
 - CABG differences (PRECOMBAT had more off-pump CABG)


Tools and Techniques - Clinical: SYNTAX score II calculator

To be made public at EuroPCR 2016!

Yohei Sotomi¹, MD; Carlos Collet¹, MD; Rafael Cavalcante², MD, PhD; Marie-Angèle Morel³, BSc; Pannipa Suwannasom^{1,2,4}, MD; Vasim Farooq⁵, MD, PhD; Menno van Gameren¹, MD; Yoshinobu Onuma^{2,3}, MD, PhD; Patrick W. Serruys^{6*}, MD, PhD

Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;
 Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands;
 Northern Region Heart Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand;
 Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester and Manchester Heart Centre, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, United Kingdom;
 International Centre for Circulatory Health, NHLI, Imperial College London, United Kingdom

Conclusions

- In patients with LMD, PCI is associated with a higher MACCE rate than CABG at 5 years
- This is driven by a higher rate of repeat revascularization in patients with SYNTAX scores ≥ 33 associated with PCI
- The rates of the safety endpoint of all-cause death/MI/Stroke are similar between the two strategies
- In the subset of less anatomic complexity/burden PCI might lead to a lower overall and cardiac mortality

Conclusions

- Very long term (10 years) preliminary data is reassuring for the safety of PCI
- The decision making process should take into account important clinical comorbidities and demographic factors
- The SYNTAX score II is a useful tool to help this decision process

Thank You!

Volume 11 - Number 13 - April 2016 - ISSN: 1774-024X

Euro**Intervention**

CORONARY INTERVENTIONS

- 1457 COmplex coronary Bifurcation lesions: RAndomized comparison of a strategy using a dedicated self-expanding biolimus-eluting stent versus a culotte strategy using everolimus-eluting stents: primary results of the COBRA trial C. Dubois, T. Adriaenssens, et al
- 1468 Significance of prior percutaneous revascularisation in patients with acute coronary syndromes: insights from the prospective PROSPECT registry A. Iñiguez, G.W. Stone, et al
- 1475 Clinical outcomes following "off-label" versus "established" indications of bioresorbable scaffolds for the treatment of coronary artery disease in a real-world population T. Miyazaki, A. Colombo, et al.
- 1479 A novel approach to treat in-stent restenosis: 6- and 12-month results using the everolimus-eluting bioresorbable vascular scaffold
 - P. Jamshidi, F. Cuculi, et al
- 1487 Patient preference regarding assessment of clinical follow-up after percutaneous coronary intervention: the PAPAYA study M.M. Kok, M.J. I.Izerman, et al.
- 1495 Does access to invasive examination and treatment influence socioeconomic differences in case fatality for patients admitted for the first time with non-ST-elevation myocardial infarction or unstable angina? S. Mårtensson, M. Osler, et al
- 1503 Virtual reality training in coronary angiography and its transfer effect to real-life catheterisation lab U.I. Jensen P Tornvall et al.

1511 A disaster never comes alone: total ostial occlusion of the left main coronary artery with an anomalous origin P. Rodrigues, S. Torres, et al

INTERVENTIONS FOR VALVULAR DISEASE AND HEART FAILURE

- 1512 Left atrial appendage occlusion with the AMPLATZER Amulet device: an expert consensus step-by-step approach A Tzikas H Omran et al.
- 1522 The prognostic value of acute and chronic troponin elevation after transcatheter aortic valve implantation J.M. Sinning, N. Werner, et al.
- 1530 Emergency transcatheter agrtic valve replacement in patients with cardiogenic shock due to acutely decompensated aortic
 - C. Frerker, K.H. Kuck, et al.
- 1537 First-in-man report of residual "intra-clip" regurgitation between two MitraClips treated by AMPLATZER Vascular M. Taramasso, F. Maisano, et al
- 1541 First transfemoral percutaneous edge-to-edge repair of the tricuspid valve using the MitraClip system T. Wengenmayer, S. Grundmann, et al
- 1545 First Lotus aortic valve-in-valve implantation to treat degenerated Mitroflow bioprostheses F. Castriota, A. Cremonesi, et al
- 1549 Direct Flow valve-in-valve implantation in a degenerated mitral bioprosthesis G Bruschi F De Marco et al

Asia Intervention

www.asiaintervention.org

Volume 2 - Number 1 - January 2016 - ISSN: 2426-3958

CORONARY INTERVENTIONS

- 19 Late angiographic and clinical outcomes of the novel BioMime™ sirolimus-eluting coronary stent with ultra-thin cobalt-chromium platform and biodegradable polymer for the treatment of diseased coronary vessels: results from the prospective, multicentre meriT-2 clinical trial
- 28 Impact of chronic lung disease after percutaneous coronary intervention in Japanese patients with acute coronary syndrome
- 36 Distribution characteristics of coronary calcification and its substantial impact on stent expansion; an optical coherence tomography study
- 44 Smooth arterial healing after paclitaxel-coated balloon angioplasty for in-stent restenosis assessed by optical frequency domain imaging
- Mediastinal haematoma complicating percutaneous coronary intervention via the radial artery

INTERVENTIONS FOR STRUCTURAL HEART DISEASE AND HEART FAILURE

- 49 Comparison of aortic annulus dimensions between Japanese and European patients undergoing transcatheter aortic valve implantation as determined by multi-detector computed tomography: results from the OCEAN-TAVI and a European single-centre cohort
- 57 Combined percutaneous transvenous mitral commissurotomy and left atrial appendage closure as an alternative to anticoagulation for rheumatic atrial fibrillation

EDITORIAL

- 7 Evolution and current status of interventional cardiology
- 10 Tailoring TAVI in Asia: insights from MSCT
- 13 Opening the shell for better stent results

ASIA-PACIFIC HOTLINES AT TCT 2015

- 16 Asia-Pacific Hotlines at TCT 2015: a prospective randomised trial of paclitaxel-eluting vs. everolimuseluting stents in diabetic patients with coronary artery disease (TUXEDO)
- 17 Asia-Pacific Hotlines at TCT 2015: bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease (ABSORB China Trial)
- 18 Asia-Pacific Hotlines at TCT 2015: evaluation of initial surgical versus conservative strategies in patients with asymptomatic severe aortic stenosis (The CURRENT AS registry)

HOW SHOULD | TREAT?

- 58 How should I treat a patient with critical stenosis of a bifurcation of the left main coronary artery with an acute angulation between the left main artery and the left circumflex artery?
- 65 How should I treat a percutaneous posteromedial mitral periprosthetic paravalvular leak closure in a bioprosthesis with no radiopaque ring?