## How Much Promising BRS in Real-World PCI? Updated Real-World Experience and Registry Data

Duk-Woo Park, MD, PhD Heart Institute, University of Ulsan College of Medicine, Asan Medical, Seoul, Korea





### **Evolution of DES Technology**



## **Potential Advantages of BRS**

- Provides transient vessel scaffolding when needed, "leaving nothing behind"
- Local drug release inhibits restenosis
- Restores vessel to natural state with normal function and healing responses
- Reduces need for long term DAPT
- Eliminates source of inflammation/ irritation
- Reduces late events (esp. SAT)
- Vessel free for future interventions; CABG



### ABSORB ABSORB 1-Year Meta-analysis ABSORB II, ABSORB III, ABSORB Japan, ABSORB China DoCE (TLF): Cardiac Death, MI or ID-TLR (pooled)





Lancet. 2016 Jan 25

## ABSORB 1-Year Meta-analysis ABSORB II, ABSORB III, ABSORB Japan, ABSORB China Device Thrombosis (Def/Prob) (pooled)





ABSORB

Lancet. 2016 Jan 25



### Study-level Meta-Analysis of 6 RCT ABSORB Series and EVERBIO II and TROFI II

#### A Target lesion revascularisation

|              | BVS    |       | EES    |       | Weight       | Fixed-effects odds ratio |  |
|--------------|--------|-------|--------|-------|--------------|--------------------------|--|
| -            | Events | Total | Events | Total | (%)          | (95% CI)                 |  |
| ABSORB China | 7      | 238   | 7      | 237   | <b>13</b> ·2 | 1.00 (0.34-2.88)         |  |
| ABSORB II    | 4      | 335   | 3      | 166   | 5.9          | 0.64(0.13-3.12)          |  |
| ABSORB III   | 42     | 1313  | 19     | 677   | 51.6         | 1.14 (0.67-1.95)         |  |
| ABSORB Japan | 7      | 265   | 5      | 133   | 10.1         | 0.68 (0.20-2.31)         |  |
| EVERBIO II   | 8      | 78    | 11     | 80    | 16.3         | 0.72 (0.28-1.87)         |  |
| TROFI II     | 2      | 95    | 1      | 96    | 2.9          | 1.98 (0.20-19.29)        |  |
| Overall      | 70     | 2324  | 46     | 1389  | 100          | 0.97 (0.66-1.43)         |  |



Heterogeneity:  $\chi^2$ =1.69, df=5; p=0.89;  $l^2$ =0% Test for overall effect: Z=0.16; p=0.87 Random-effects odds ratio 0.97 (95% Cl 0.66–1.43)

#### **B** Definite or probable stent thrombosis

|                    | BVS                     |             | EES                  |       | Weight | Fixed-effects odds ratio |           |    |            |     |
|--------------------|-------------------------|-------------|----------------------|-------|--------|--------------------------|-----------|----|------------|-----|
| 1 <u>9</u>         | Events                  | Total       | Events               | Total | (%)    | (95% CI)                 |           |    |            | ŝ   |
| ABSORB China       | 1                       | 238         | 0                    | 232   | 3.1    | 7.21 (0.14-363.23)       | *         | 20 |            |     |
| ABSORB II          | 3                       | 335         | 0                    | 166   | 8.2    | 4.49 (0.04-49.92)        |           |    | -          |     |
| ABSORB III         | 20                      | 1301        | 5                    | 675   | 69.1   | 1.89 (0.82-4.34)         |           |    |            |     |
| ABSORB Japan       | 4                       | 262         | 2                    | 133   | 16.5   | 1.02 (0.18-5.58)         | <u>12</u> |    |            |     |
| EVERBIO II         | 0                       | 78          | 0                    | 80    |        | Not estimable            |           |    |            |     |
| TROFI II           | 1                       | 95          | 0                    | 96    | 3.1    | 7.47 (0.15-376.35)       |           |    |            |     |
| Overall            | 29                      | 2309        | 7                    | 1382  | 100    | 1.99 (1.00-3.98)         |           |    |            |     |
| Heterogeneity: )   | ( <sup>2</sup> =1·90, d | f=4; p=0.75 | ; <mark>/²=0%</mark> |       |        | 0.01                     | 01        | 1  | 10         | 100 |
| Test for overall e | effect: Z=1             | .96; p=0.05 | 5                    |       |        | 10-01                    | 0.1       | 1  | 10         | 100 |
| Random-effect      | s odds rat              | tio 1.99 (9 | 5% Cl 1.00-          | 3.98) |        |                          | A Detter  |    | EES better |     |



#### Lancet 2016; 387: 537-44



#### A Target lesion failure

|              | BVS    |       | EES    | EES   |      | Fixed-effects odds ratio |   |
|--------------|--------|-------|--------|-------|------|--------------------------|---|
|              | Events | Total | Events | Total | (%)  | (95% CI)                 |   |
| ABSORB China | 8      | 238   | 10     | 237   | 9-3  | 0-79 (0-31-2-03)         |   |
| ABSORB II    | 16     | 335   | 5      | 166   | 9-6  | 1-55 (0-61-3-92)         |   |
| ABSORB III   | 102    | 1313  | 41     | 677   | 63-9 | 1.29 (0.09-1.85)         |   |
| ABSORB Japan | 11     | 265   | 5      | 133   | 7.3  | 1.11 (0-38-3.19)         |   |
| EVERBIO II   | 9      | 78    | 11     | 80    | 9.4  | 0.82 (0.32-2.09)         |   |
| TROFI II     | 1      | 95    | 0      | 96    | 0-5  | 7-47 (0-15-376-35)       |   |
| Overall      | 147    | 2324  | 72     | 1389  | 100  | 1.20 (0.90-1.60)         | • |

Heterogeneity: χ<sup>2</sup>=2·71, df=5; p=0·74; l<sup>2</sup>=0% Test for overall effect: Z=1·25; p=0·21 Random-effects odds ratio 1.20 (95% Cl 0.90-1.60)

#### **B** Myocardial infarction

|              | BVS    |       | EES    |       | Weight | Fixed-effects odds ratio |
|--------------|--------|-------|--------|-------|--------|--------------------------|
|              | Events | Total | Events | Total | (%)    | (95% CI)                 |
| ABSORB China | 5      | 238   | 4      | 237   | 6-1    | 1-25 (0-33-4-66)         |
| ABSORB II    | 15     | 335   | 2      | 166   | 10-1   | 2.71 (0.97-7.56)         |
| ABSORB III   | 90     | 1313  | 38     | 677   | 74-5   | 1.23 (0.84-1.79)         |
| ABSORB Japan | 9      | 265   | 3      | 133   | 7-2    | 1-48 (0-44-4-98)         |
| EVERBIO II   | 1      | 78    | 1      | 80    | 1.4    | 1.03 (0.06-16.55)        |
| TROFI II     | 1      | 95    | 0      | 96    | 0-7    | 7-47 (0-15-376-35)       |
| Overall      | 121    | 2324  | 48     | 1389  | 100    | 1-36 (0-98-1-89)         |
|              |        |       |        |       |        |                          |

Heterogeneity: χ²=2·80, df=5; p=0·73; l²=0% Test for overall effect: Z=1-86; p=0-06

Random-effects odds ratio 1.36 (95% Cl 0.98-1.89)

#### C Death

TCTAP 2016

|                    | DVC                      |             | EES                    |                         | Waight | Eived offects odds | ratio |            |   |            |    |
|--------------------|--------------------------|-------------|------------------------|-------------------------|--------|--------------------|-------|------------|---|------------|----|
|                    | Events                   | Total       | Events                 | ents Total (%) (95% CI) |        |                    |       |            |   |            |    |
| ABSORB China       | 0                        | 238         | 5                      | 237                     | 18-0   | 0.13 (0.02-0.77)   | 0.0   |            |   |            |    |
| ABSORB II          | 0                        | 335         | 1                      | 166                     | 3-2    | 0.05 (0.00-3.15)   | -     | -          |   |            |    |
| ABSORB III         | 15                       | 1313        | 3                      | 677                     | 58-1   | 2-18 (0-82-5-81)   |       |            |   |            |    |
| ABSORB Japan       | 2                        | 265         | 0                      | 133                     | 6-4    | 4.51 (0.24-85.41)  |       | -          |   | -          |    |
| EVERBIO II         | 1                        | 78          | 3                      | 80                      | 14-2   | 0.37 (0.05-2.68)   |       |            |   |            |    |
| TROFIII            | 0                        | 95          | 0                      | 96                      |        | Not estimable      |       |            |   |            |    |
| Overall            | 18                       | 2324        | 12                     | 1389                    | 100    | 0-95 (0-45-2-00)   |       |            |   |            |    |
| Heterogeneity: )   | ( <sup>1</sup> =11-47, c | df=4; p=0-0 | )2;1 <sup>2</sup> =65% |                         |        |                    | -     |            |   | 8.U2       |    |
| Test for overall e | ffect: Z=0               | -14; p=0-8  | 9                      |                         |        |                    | 0.01  | 0.1        | 1 | 10         | 10 |
| Dandam offert      | a adda ant               |             | W (10.13 3             | 74)                     |        |                    |       | BV5 better |   | EES better |    |

Random-effects odds ratio 0.59 (95% Cl 0.12-2.74)



### Study-level Meta-Analysis of 6 RCT ABSORB Series and EVERBIO II and TROFI II

#### A In-device late lumen loss



#### B In-segment late lumen loss

|                  | BVS             |           |          | EES       |         |       | Weight | Mean difference      |            |    |            |   |
|------------------|-----------------|-----------|----------|-----------|---------|-------|--------|----------------------|------------|----|------------|---|
| 14               | Mean            | (SD)      | Total    | Mean      | (SD)    | Total | (%)    | (95% Cl)             |            | 25 |            |   |
| ABSORB China     | 0.19            | (0·40)    | 240      | 0.13      | (0.37)  | 246   | 31.9   | 0.06 (-0.01 to 0.13) |            |    |            |   |
| ABSORB Japan     | 0.13            | (0.30)    | 272      | 0.12      | (0.32)  | 137   | 36.2   | 0.01 (-0.05 to 0.07) |            |    |            |   |
| EVERBIO II       | 0.30            | (0.44)    | 75       | 0.20      | (0.43)  | 103   | 8.9    | 0.10 (-0.03 to 0.23) |            |    |            |   |
| TROFI II         | 0.14            | (0.28)    | 94       | 0.06      | (0.29)  | 98    | 23.0   | 0.08 (-0.00 to 0.16) |            |    |            |   |
| Overall          |                 |           | 681      |           |         | 584   | 100    | 0.05 (0.01-0.09)     |            |    |            |   |
| Heterogeneity:   | $\chi^2 = 2.67$ | , df=3; p | =0.45;12 | =0%       |         |       |        |                      |            |    |            |   |
| Test for overall | effect: Z       | =2.54; p  | o=0·01   |           |         |       |        | 1                    | 0.5        |    | 0.5        |   |
| Random-effect    | s mean          | differe   | nce 0.05 | 5 (95% Cl | 0.01-0. | 09)   |        | -1                   | BVS better | 0  | EES better | 1 |



#### Lancet 2016; 387: 537-44



## Limitations of BVS Platforms Strut and Coating Thickness In Perspective



| Strut Thickness             |                           |                   |                   |                  |                           |  |  |  |
|-----------------------------|---------------------------|-------------------|-------------------|------------------|---------------------------|--|--|--|
| 81µm                        | 89µm                      | 120µm             | 125µm             | 74µm             | 150µm                     |  |  |  |
|                             | Polymer Coating           |                   |                   |                  |                           |  |  |  |
| Conformable<br>7-8µm / side | Conformable<br>6µm / side | Abluminal<br>11µm | Abluminal<br>20µm | Abluminal<br>4µm | Conformable<br>3µm / side |  |  |  |





# **Unresolved Limitations of BVS**

- High profile; type A lesions
- Complex lesions; Calcified or tortuous, LM, long, bifurcation
- Stretchability and fracture
- Overlapping
- Side branch
- Relatively high late loss





## **Relatively Complex Procedure for BVS**

- Thicker Struts
- Greater Attention to Procedure
  - Strut fracture with overdilation
  - Early thrombosis with underexpansion
- More Techniques Necessary
  - Pre: More Aggressive Plaque Modification
  - Post: Routine NC Balloon
  - Routine Intravascular Imaging





## **BRS for Left Main Lesions**



- Panel 1,2; BVS can be performed
- Panel 3; BVS should be decided on a case-by-case basis
- Panel 4; BVS should be avoided (SB big, large plaque)



Colombo et al. Int J Cardiol. 2014;175(1):e11-3.



## **BRS for Bifurcation Lesions**

### Potential limitations

- Limited post-dilation and cell expansion affecting two BRS techniques and post-dilation optimization
- Risk of fracture and distortion.

Reports of increased BRS thrombosis in complex anatomy

 Potential role of strut thickness, overlapping scaffolds, undersizing and malapposition due to inadequate post-dilation driven by strut fracture fear







Two overlapped 2.5-mm BVS



## **BRS for Long Coronary Lesions**

## **Scaffold overlap considerations**

### Marker to Marker

Distal balloon marker aligned with the proximal marker beads of the implanted scaffold . The markers of the second scaffold will be adjacent to the markers of the deployed scaffold.



= APPROX. 1 MM OVERLAP

### Scaffold to Scaffold

Distal balloon marker proximal to the proximal marker beads of the implanted scaffold. There will be ~1 mm of space between the markers of the second scaffold and the markers of the deployed scaffold.



NO or MINIMAL OVERLAP





## **BRS for CTO**





JACC: Cardiovascular Interventions 2014;7:e157–e159



Struts malapposition

## **BRS for STEMI**

Vessel preparation is mandatory

 thrombus aspiration or balloon predilation

 Sizing of vessel may be difficult because of vasoconstriction and presence of thrombotic debris

Imaging may be considered for optimal sizing
Use potent P2Y12 platelet inhibitor





## GHOST-EU (N=1,189)

- Post-marketing (Nov 2011-Jan 2014)
- Investigator-initiated
- Retrospective
- Multicenter (N=10)
- Observational
- Single-arm
- No monitoring
- Site-reported events



Capodanno D, et al. EuroIntervention. 2015;10:1144-53



### GHOST-EU: 6-Mo Outcomes\* 1,189 patients, 1,731 Absorb BVS





Capodanno D, et al. EuroIntervention. 2015;10:1144-53



### GHOST-EU: 6-Mo Outcomes\* 1,189 patients, 1,731 Absorb BVS



TCTAP 2016

Capodanno D, et al. EuroIntervention. 2015;10:1144-53

COVRF

## **Study Design**

GHOST-EU<sup>1</sup> N=1,189 from 10 EU sites

XIENCE V USA<sup>2</sup> N=5,034 from 162 US sites

1:1 case-control propensity score matching

Non-parsimonious logistic regression model encompassing 26 variables

Matching ratio 0.76 Matching ratio 0.18 GHOST-EU
N=905
Matching ratio 0.18

GHOST-EU

GHOST-EU

## **Patients Characteristics (matched)**

|                        |                               | <b>ABSORB</b><br>(n=905) | <b>XIENCE V</b><br>(n=905) | P value |
|------------------------|-------------------------------|--------------------------|----------------------------|---------|
| Domographics           | Age - mean $\pm$ SD, yrs      | 63 ± 11                  | 63 ± 11                    | 0.57    |
| Demographics           | Male sex - %                  | 78                       | 78                         | 1.00    |
| Dick factors           | Diabetes - %                  | 28                       | 27                         | 0.82    |
| RISK IACIOIS           | Renal disease - %             | 16                       | 19                         | 0.10    |
| Clinical presentation  | Acute coronary syndrome - %   | 42                       | 43                         | 0.92    |
| Clinical presentation  | Multivessel disease - %       | 58                       | 60                         | 0.41    |
|                        | ACC/AHA B2/C lesions - %      | 55                       | 55                         | 0.96    |
|                        | De novo - %                   | 95                       | 95                         | 0.82    |
|                        | Chronic total occlusion - %   | 8                        | 8                          | 0.86    |
| Lacian characteristica | Ostial - %                    | 8                        | 11                         | 0.06    |
| Lesion characteristics | Bifurcation - %               | 22                       | 23                         | 0.79    |
|                        | Lesion length – mean ± SD, mm | 20 ± 15                  | 20 ± 13                    | 0.65    |
|                        | RVD – mean ± SD, mm           | 3.0 ± 0.5                | 3.0 ± 0.5                  | 0.49    |
|                        | Diam. stenosis– mean ± SD, %  | 85 ± 13                  | 85 ± 11                    | 0.86    |
| Procedure details      | Post-dilatation - %           | 52                       | 51                         | 0.64    |

## Target lesion failure Cardiac death, MI, TLR



GHOST-EU

## **Target Lesion Revascularization**



GHOST-EU

Capodanno D, 27° TCT, October 11-15, 2015, San Francisco, CA

## Definite or Probable Device Thrombosis ARC definition



GHOST-EU

## **ISAR-ABSORB** Registry

419 patients from 2 high-volume centers in Munich.
Routine angiographic surveillance 6–8 months.

|                                        | Patients           |                                            | Lesions         |
|----------------------------------------|--------------------|--------------------------------------------|-----------------|
|                                        | 419                |                                            | 527             |
| Age (years)                            | $66.6 \pm 10.9$    |                                            | 5               |
| Male sex                               | 321 (76.6)         | Target vessel                              |                 |
| Diabetes                               | 132 (31.5)         | Left main stem                             | 0 (0.0)         |
| Diabetes (insulin-treated)             | 43 (10.3)          | Left anterior descending                   | 237 (45.0)      |
| Hypertension                           | 361 (86.2)         | Left circumflex                            | 110 (20.9)      |
| Hypercholesterolemia                   | 281 (67.1)         | Right coronary artery                      | 176 (33.4)      |
| Current smoker                         | 90 (21.5)          | Vanous hypers graft                        | 1 (0.8)         |
| Glomerular filtration rate < 60 mL/min | 98 (23.8)          | venous bypass gran                         | 4 (0.0)         |
| Body mass index (kg/m <sup>2</sup> )   | $27.8\pm4.8$       | Lesion type                                |                 |
| Left ventricular ejection fraction (%) | $55.2 \pm 9.4^{a}$ | Complex lesion morphology                  | 258 (49.0)      |
| Previous MI                            | 109 (26.0)         | Bifurcation lesion                         | 69 (13.1)       |
| History of coronary bypass surgery     | 18 (4.3)           | Chronic occlusion                          | 7 (1.3)         |
| Multivessel disease                    | 319 (76.1)         |                                            | 7 (1.5)         |
| Clinical presentation                  |                    | Lesion characteristics before intervention |                 |
| Stable coronary artery disease         | 256 (61.1)         | Reference vessel diameter (mm)             | $2.89 \pm 0.46$ |
| Unstable angina                        | 48 (11.5)          | Minimal lumen diameter (mm)                | $0.91 \pm 0.47$ |
| Non-ST-elevation MI                    | 80 (19.1)          | Diameter stenosis (%)                      | $68.6 \pm 15.3$ |
| ST-elevation MI                        | 35 (8.4)           | Lesion length (mm)                         | $15.8 \pm 9.5$  |

CCI 2016;87:822-829

ICTAP 2016



## **ISAR-ABSORB; Angiographic Outcomes**

|                                           | Lesions<br>360  |
|-------------------------------------------|-----------------|
|                                           | 500             |
| Reference vessel diameter (mm)            | $2.95 \pm 0.46$ |
| Angiographic characteristics (in-stent)   |                 |
| Minimal lumen diameter (mm)               | $2.33 \pm 0.63$ |
| Diameter stenosis (%)                     | $21.0 \pm 17.4$ |
| Late lumen loss (mm)                      | $0.26 \pm 0.51$ |
| Angiographic characteristics (in-segment) |                 |
| Minimal lumen diameter (mm)               | $2.15 \pm 0.60$ |
| Diameter stenosis (%)                     | $27.5 \pm 16.1$ |
| Late lumen loss (mm)                      | $0.21 \pm 0.50$ |
| Restenosis rate                           | 27 (7.5)        |

## **ISAR-ABSORB; Clinical Outcomes**

|                                                            | Patients |         |          |
|------------------------------------------------------------|----------|---------|----------|
|                                                            | 419      | 6-month | 12-month |
|                                                            |          | rate    | rate     |
| Death                                                      | 15       | 2.7     | 4.0      |
| Cardiac death                                              | 9        | 1.7     | 2.4      |
| MI                                                         | 11       | 2.4     | 2.7      |
| Death or MI                                                | 24       | 4.9     | 6.2      |
| Definite stent thrombosis                                  | 10       | 2.0     | 2.6      |
| Definite or probable<br>stent thrombosis                   | 12       | 2.4     | 3.1      |
| Target lesion revascularization                            | 33       | 4.2     | 9.1      |
| Composite of death, MI,<br>target lesion revascularization | 49       | 7.3     | 13.1     |

## **BRS in Real-World PCI**

- Theoretically, BRS has a unique safety and efficacy advantage beyond contemporary metallic DES.
- Despite conceptual advantages with BRS, current BRS platforms have mechanical limitations and require complicated preparation compared to current metallic DES.





## **BRS in Real-World PCI**

Next-generation BRS with thinner struts and more durable platform could be more widely applicable for real-world patients with diverse clinical and angiographic characteristics. In addition, long-term safety and efficacy should be continuously addressed in the real-world practice.





## **IRIS-DES Registry**

### Design

- **DESIGN:** An unrestricted, multicenter, prospective cohort
- OBJECTIVE: To compare the safety and efficacy of the second- or newer-generation DES and the firstgeneration DES in everyday clinical practice,
- PRINCIPAL INVESTIGATOR Seung-Jung Park, MD, PhD, Asan Medical Center, Seoul, Korea





Evaluation of Effectiveness and Safety of the First, Second, and New

Drug-Eluting Stents in Routine Clinical Practice;

## **IRIS-DES Registry**

Consecutive PCI patients receiving New DES without a mixture of other DES

#### **Prospective Enrollment**



#### \*Primary end point: Composite of Death, MI, and TVR at 12-months

ТСТА

CVRF

## Comparative Effectiveness Research (CER) of Various Coronary Stents

- Enrollment and at least 2-year clinical follow-up was completed for Cypher, Xience, Genous, Promus element, Xience prime, Nobori, Biomatrix, and Resolute intergrity; analysis results are expected in the summer of 2016.
- The IRIS-BVS and IRIS-BVS AMI registries are actively ongoing, and comparative data will be available in the near future.



