

BRS failure: Type, risk and Management

Alaide Chieffo, MD Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy

Disclosure Statement of Financial Interest

I, Alaide Chieffo DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Risks of Target lesion failure

Diabetes present	1.56 (1.19–2.04)	0.002
Previous cardiac intervention	1.36 (1.03–1.78)	0.03
Any lesion with minimum luminal diameter <median (0·93="" mm)*<="" td=""><td>1.37 (1.03–1.82)</td><td><mark>0.03</mark></td></median>	1.37 (1.03–1.82)	<mark>0.03</mark>
Any lesion with reference vessel diameter <median (2·65="" mm)*<="" td=""><td>1·52 (1·14–2·03)</td><td>0.005</td></median>	1·52 (1·14–2·03)	0.005
Any ACC/AHA class B2 or C lesion (vs class A or B1)*	1·65 (1·19–2·28)	0.002
BVS (vs CoCr-EES)	1.23 (0.92–1.64)	0.14

Meta-analysis: 6 RCT

Causes of TLF may be similar with DES, however.....

Current BRS specific issues

<u>When compared with</u> <u>current DES...</u>

Thicker struts

> Increased vessel coverage due to wider struts

Limited expansion capabilities of BRS

Strut width and Vessel coverage

.5, 3.0mm BRS Hoop 3.5mm BRS Hoop	Link	Hoop U State State 23 58 6	Ноор Х500 50 мм 12 57 В
	Absorb	Cypher	Xience V
Strut thickness	157µm	152.6µm	81.3µm
Strut width (link)	140µm	60µm	81.3µm
Strut width (hoop)	2.5, 3.0mm; <mark>190.5µm</mark> 3.5mm; 215.9µm	130µm	81.3µm
ASSA/vessel surface area (%)	2.5mm; 32% 3.0mm; 27% 3.5mm; 26%	2.5-3.0mm (6 cells); 12-15% 3.5-4.0mm (7 cells); 12-15%	10.7%
	ASSA = abluminal strut surface are Macroscopic pictures: Absorb (Mur	a amatsulet al TACC inty 2013)	

Cypher and Xience V (Doostzadeh et al. Coronary Artery Disease 2010)

Strut width and Vessel coverage

Oversized BRS increases vessel coverage and strut volume..

Oversizing may have higher risk..

Ishibashi et al. JACC intervent. 2015

OSPEDALE

SAN RAFFAFI F

Limited expansion capabilities

Ormiston et al. Eurointervention 2015

More careful sizing is important

Because...

- Oversizing --- vessel coverage A event A
- Undersizing/Large vessels
 - --- Malapposition event risk 🛧
 - ✓ It is difficult to correct after deployment due to expansion capabilities
 - \checkmark Overexpansion might cause fracture: event risk \clubsuit

BVS thrombosis

Causes of Stent thrombosis

Stent factors	Hypersensitivity to drug coating or polymer Incomplete endothelialization		
	Stent design		
	Covered stents (64,65)		
Patient factors	PCI for acute coronary syndrome/ST-segment elevation MI		
	Diabetes mellitus		
	Renal failure		
	Impaired left ventricular function		
	Premature cessation of dual antiplatelet therapy		
	Aspirin nonresponsiveness		
	Clopidogrel nonresponsiveness		
	Glycoprotein IIb/IIIa inhibitors		
	Prior brachytherapy		
	Malignancy		
	Saphenous vein graft disease		
Lesion characteristics	Lesion/stent length		
	Vessel/stent diameter		
	Complex lesions (bifurcation lesions, chronic total occlusions)		
	Saphenous vein graft target lesion		
	Stasis		
Procedural factors	Inadequate stent expansion/sizing Incomplete stent apposition		
	Stent deployment in necrotic core		
	Residual edge dissection		

Causes of Scaffold thrombosis may be similar, however.....

Meta-analysis: 6 RCT

EMO GVM CENTRO

(ABSORB II, ABSORB china, ABSORB Japan, ABSORB III, EVERVIO II, TROFI II)

To overcome this less forgiving device, Optimal implantation should be important

Optimal implantation and ST risk

ON Thrombosis in Bioresorbable Scaffolds: Implantation Strategy

OSPEDALE SAN RAFFAELE

ST risk can be reduced by implantation technique

Puricel et al. J Am Coll Cardiol 2016 67:921-931

Incidence of ST

	Milan	ABSORB III	Ghost EU
	400 Lesion, 204 PT	ISZZ LESION, PI	1440 Lesion, 1109 PT
Definite/Probable ST	1.2% at 1y	1.5% at 1y	2.1% at 6m
ACC/AHA class B2/C	74.8%	68.7%	53.5%
Bifurcation	46.8%	Excluded	23.1%
Total BVS length per Pt	53.2±32.5mm	20.5±7.2mm	32.6±23.0mm
Pre-dilatation	97.3%	Mandatory	98%
Post-dilatation	99.8%	65.5%	49%
Post-dilatation pressure	20.8±4.5atm	15.4±3.0 atm	-
Intravascular imaging	85.8%	11.2%	14.4%

Capodanno et al. EuroIntervention 2014

Ellis et al. N Engl J Med 2015

ST risk can be overcome by optimal implantation techniques even in complex lesion subset

65 y.o Male STEMI

<u>Baseline angiogram</u>

CTO of RCA mid segment, collaterals to LAD branches

After administration of Ticagrelor + Bivalirudin- wire crossing and thrombus aspiration -

LAD was restored its flow and appeared to be diffusely diseased

BVS implantation

ABSORB 3.0/18mm (7atm)

followed by Post-dilatation NC3.0mm

Final IVUS

Massive plaque with necrotic core (*) and deep calcification

Final Angiogram

Two hours later... chest pain and ST elevation <u>Coronary Angiogram</u>

The proximal platinum marker of thevBVS

EES implantation and Final Angiogram

Management of BRS failure -Follow-up after TLR-

Tanaka et al. Catheter Cardiovasc Interv. 2015 Sept2

Among BVS implantation 300 lesions (215 patients) May 2012 – Dec 2014 in 2 centers, Milan

TLR: 20 lesions (18 patients) for BVS failure

Follow-up: median 345 days (292-470 days)

	<u>Management at</u>	TLR
<u>ISR pattern</u>	> DES	11
Focal Lesion 15/20	> Another BRS	4
	▷ DCB	3
	> POBA	2

Clinical event after TLR

Event	Time from TLR to Event	Management of repeat TLR
Sudden death	293	_
Repeat TLR	250	DES
Repeat TLR	90	BRS
Repeat TLR	123	CABG

20 lesions 18 patients Median 345 days after TLR

Implantation techniques -to overcome limitations of current BRS-

<u>1. Lesion preparation</u>

For Scaffold expansion

- Less radial force and greater acute recoil
- Inadequate lesion preparation may correlate with underexpansion

Brown et al. Cather Cardiovasc Interv 2014;84:37-45 Mattesini et al. J Am Coll Cardiol Intev 2014;7:741-750 Danzi et al. Cather Cardiovasc Interv 2015;

1:1 pre-dilatation with NC / Low threshold for debulking devices

<u>2. Post-dilatation</u>

Importance of Post-dilatation

- Acute lumen gain is lower for current BRS than metallic stents with similar pressures even in simplest lesion subset Gao et al. J Am Coll Cardiol 2015/Serruys et al. Lancet 2015
- High post-dilatation rates (over 90%) and pressures (over 20 atm) were associated with lower rates of ST
 Caiazzo et al. Int J Cardiol 2015:201:129-136

Risk with Overexpansion

Overexpansion might cause strut disconnection

Foin et al. Eurointerv2015; Sep, Epub

Non-oversized NC balloon with high-pressure (over 20 atm)

Balloon/Scaffold diameter 1:1, maximum +0.5mm

3. Intravascular imaging

- To assist Sizing
 - >BRS requires more careful sizing
 - Undersize Malapposition 🛶 🗸 ST risk
- End of procedure

To detect... -Underexpansion: -Malapposition -Edge injury:

enz et al .T Am Coll Cardiol 2015:66:1901-14

Low threshold for Intravascular imaging especially at procedure end

26

- ✓ Currently commercially available BRS are still first generation bulky device with inherent limitations
 - However in order to overcome their limitations in order to minimize BRS failures it is fundamental the use of approppriate implantation techniques such as proper vessel preparation with aggressive predilatation, proper post dilatation and usage of imaging guidance, IVUS and/OCT

 \checkmark Awaiting for new generation BRS