ABSORB

From ABSORB III to the Future BRS in STEMI and Vulnerable Plaque

Gregg W. Stone, MD

Columbia University Medical Center NewYork-Presbyterian Hospital
Cardiovascular Research Foundation

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- ABSORB clinical trial program study chairman (uncompensated)
- Consultant

Company

- Abbott Vascular
- Reva Corp.

65 yo man w/ACS \Rightarrow TAXUS in LAD and LCX, died 9 mos later

Non-culprit

C/O
Renu Virmani
$500 \mu \mathrm{~m}$

Non-culprit

HORIZONS-AMI: 3-Year Stent Thrombosis Stent randomization

204 lesions (SES=73; PES=85; CoCr-EES=46) from 149 autopsy cases with implant

 duration >30 days and ≤ 3 yearsGreater strut coverage with less inflammation, less fibrin deposition, and less late and very late stent thrombosis but similar rates of neoatherosclerosis and fracture-related adverse pathological events.

DES for ACS

CoCr-EES 6M

Increased safety with regards to strut coverage compared to $1^{\text {st }}$ gen DES.

ABSORB in STEMI: TROFI II 192 pts with STEMI <24hrs
 Thrombectomy \pm pre-dilatation (based on angiographic guidance)

Clinical FU: $30 \mathrm{~d}, 6 \mathrm{mo}, 1 \mathrm{yr}, 2 \mathrm{yr}, 3 \mathrm{yr}$

Primary Endpoint: Healing Score at 6 months (NI)

Healing Score

Healing score = [\% ILDx4] + [\% MUx3]+ [\% Ux2]+ [\% M]

ILD: intraluminal defect
MU: malapposed and uncovered
Weighting points in the formula

References: TROFI trial Eur Heart J.2013;34:1050-1060; Eur Heart J Cardiovasc Imaging.. 2014;15:987-995 Leaders trial Eur Heart J. 2010;31:165-176; Resolute all comers trial Eur Heart J. 2011;32:2454-63 Absorb cohort B EuroIntervention 2015;10:1299-306; NANO Plus Asialntervention 2015; 1:57-70.

Sabaté M et al. Eur Heart J 2016;37:229-40

Cumulative Healing Score

 Primary endpoint for non-inferiority was met

6-Month OCT and QCA

OCT (median)	Absorb $(\mathrm{n}=95)$	EES (n=98)	P-value
Healing score	$0.90[0.00,0.30]$	$1.04[0.00,3.85]$	0.053
Uncovered and malapposed struts	$0.0[0.0,0.0]$	$0.0[0.0,0.0]$	0.036
	$(\min 0.00 ; \max 0.75)$	$(\min 0.00 ; \max 2.47)$	
Covered and malapposed struts	$0.0[0.0,0.9]$	$0.02[0.0,2.3]$	0.01
Covered and apposed struts	$99.9[99.2,100]$	$100[99.1,100]$	0.27
Uncovered and apposed struts	$0.0[0.0,0.8]$	$0.0[0.0,0.3]$	0.96
Strut coverage, mm	$0.10[0.09,0.13]$	$0.07[0.05,0.10]$	<0.001
Neointimal hyperplasia, mm ${ }^{3}$	$29.0[23.2,41.5]$	$25.8[17.2,40.0]$	0.24
QCA	Absorb (n=94)	$E E S(n=98)$	P-value
Late loss, in-stent (mm)	0.17 ± 0.24	0.08 ± 0.28	0.02
Late loss, in-segment $(m m)$	0.14 ± 0.28	0.06 ± 0.29	0.09
Binary restenosis, \%	0%	1.1%	1.0

HORIZONS-ABSORB AMI

Harmonizing Outcomes with Revascularization, Stents and ABSORB in AMI

$\sim 5,000$ pts eligible for device randomization

Sealing and Shielding of Plaques After Scaffold Implantation

Example of capping a calcified plaque

BVS Implantation Over a Fibroatheroma

LAD reconstruction showing low shear stress throughout the BVS

Fibroatheroma

BVS Implantation Over a Fibroatheroma

2 years later: ESS has normalized over the scaffold, and a 210 um layer of neointima has developed

Treatment of a TCFA with BVS: Substantial lumen enlargement due to plaque regression with adaptive remodeling (cohort A pt)

Karanasos A et al. Circulation. 2012;126:e89-e91

Interventional Plaque Regression by BVS: Substantial lumen enlargement due to plaque regression with adaptive remodeling (cohort A pt)

Rorspectiu PROSPECT II Study PROSPECT ABSORB RCT

900 pts with ACS after successful PCI

 3 vessel IVUS + NIRS (blinded)≥ 1 IVUS lesion with $\geq 65 \%$ plaque burden present?

ABSORB BVS	GDMT
+ GDMT (N~150)	$(\mathrm{N}=150)$

Routine angio/3V IVUS-NIRS FU at 2 years
Clinical FU for up to 15 years

PREVENT Trial

All-comers, with any epicardial coronary stenosis with $F F R \geq 0.80$ and with 2 of the following:

1. TCFA by OCT or VH-IVUS
2. IVUS MLA $\leq 4.0 \mathrm{~mm}^{2}$
3. IVUS Plaque Burden $>70 \%$
4. Lipid-Rich Plaque on NIRS $\left({ }_{\max } \mathrm{LCBI}_{4 \mathrm{~mm}}>315\right)$

BVS+OMT
$\mathrm{N}=800$
OMT
$\mathrm{N}=800$

Primary endpoint at 2 years:
CV death, MI, or hospitalization due to unstable angina

