

Complex PCI: Left Main and Bifurcation

New data from RCT and registry

Y. Louvard, ICPS, Massy, Générale de Santé-Ramsay, France

TCTAP 2016, Seoul, Korea

Predictors of SB occlusion after cross-over stenting ?

An Angiographic Tool for Risk Prediction of Side Branch Occlusion in Coronary Bifurcation Intervention: The RESOLVE Score System

www.icps.com.fr

Dou, J Am Coll Cardiol Intv 2015;8:39–46

An Angiographic Tool for Risk Prediction of Side Branch Occlusion in Coronary Bifurcation Intervention: The RESOLVE Score System

Scores Attributed to Each Variable

Risk Factor	Level	Point	
Plaque distribution	At the opposite side of SB	0	
	At the same side of SB	1	
MV TIMI flow grade before stenting	TIMI 3	0	
	TIMI 2	6	
	TIMI 1	11	
	TIMIO	17	
Pre-procedural diameter stenosis of bifurcation core (%)	<50	0	
	50-<70	2	
	≥70	3	
Bifurcation angle (°)	<70	0	
	70-<90	4	
	≥90	6	
Diameter ratio between MV/SB	<1.0	0	
	1.0-<1.5	2	
	1.5-<2.0	6	
	≥2.0	9	
Diameter stenosis of SB before MV stenting (%)	<50	0	
	50-<70	4	
	70-<90	6	
	≥90	7	

www.icps.com.fr

Dou, J Am Coll Cardiol Intv 2015;8:39–46

- Acute bifurcation angle = carena shift no occlusion (Vassiliev)
- Carena shift ≠ SB stenosis (Koo)
- Plaque shift from proximal main is a factor of occlusion (Hahn)
- Angle not a predictor of SB occlusion (Hahn)
- Wide bifurcation angle = predictor of occlusion (plaque shifting, no carena shift)(Dou)

EBC

1 vs 2 stents for bifurcation stenting when the SB is big and the SB stenosis is long ?

FBC

Randomized comparison of provisional side branch stenting versus a two-stent strategy for treatment of true coronary bifurcation lesions involving a large side branch.

Two-year results in the Nordic-Baltic Bifurcation Study IV

Indulis Kumsars, Niels R. Holm, Matti Niemelä, Andrejs Erglis, Kari Kervinen, Evald H. Christiansen, Michael Maeng, Andis Dombrovskis, Vytautas Abraitis, Aleksandras Kibarskis, Terje K. Steigen, Thor Trovik, Gustavs Latkovskis, Dace Sondore, Inga Narbute, Christian Juhl Terkelsen, Markku Eskola, Hannu Romppanen, Lisette Okkels Jensen, Mika Laine, Tuija Vasankari, Pål Gunnes, Lasse Hebsgaard, Ole Frobert, Fredrik Calais, Jens Aaroe, Juha Hartikainen, Svend Eggert Jensen, Jan Ravkilde, Thomas Engstrøm, Leif Thuesen, Jens F. Lassen

For the Nordic-Baltic PCI Study Group

XI European Bifurcation Club meeting - Athens, Greece - 25th & 26th September 2015 niels.holm@clin.au.dk

MACE: cardiac death, non-procedural myocardial infarction, target lesion revascularization and definite stent thrombosis

XI European Bifurcation Club meeting - Athens, Greece - 25th & 26th September 2015

niels.holm@clin.au.dk

🕐 Institut Cardiovasculaire Paris Sud

The European Bifurcation Coronary study: a randomised comparison of provisional T-stenting versus a systematic **TWO** stent strategy in large calibre true bifurcations

David Hildick-Smith, Goran Stankovic, Manuel Pan, Philippe Brunel, Didier Carrie, Michael Maeng, Mark Spence, Keith Oldroyd, Alaide Chieffo, Thomas Hovasse, Andreas Baumbach, Jens Lassen, Thierry Lefevre and Yves Louvard on behalf of the EBC TWO trial investigators

The EBC two trial is an investigator-initiated trial made possible by unrestricted grants by

 rerumo
 Europe and Pie Medical

PRIMARY ENDPOINT

-BC

	Provisional T (n=103)	Culotte (n=97)
Death, MI, TVR at 12 months	8 (8%)	10 (10%)
Death	2 (2%)	1 (1%)
Myocardial infarction	5 (5%)	10 (10%)
NSTEMI	5	9
STEMI	0	1
<48H	4	10
TVR	3 (3%)	1 (1%)
Stent thrombosis	1 (1%)	3 (3%)
Definite / Probable	1	2
Possible	0	1

16% double stenting in Provisional

WINSTITUT CARDIDVASCULAIRE PARIS SUD Randomized Comparisons Between Different Stenting Approaches for Bifurcation Coronary Lesions With or Without Side Branch Stenosis

www.icps.com.fr

Kim YH, J Am Coll Cardiol Intv 2015;8:550–60

W INSTITUT CARDIDVASCULAIRE PARIS SUD Randomized Comparisons Between Different Stenting Approaches for Bifurcation Coronary Lesions With or Without Side Branch Stenosis

MACE in the PERFECT Studies

www.icps.com.fr

Kim YH, J Am Coll Cardiol Intv 2015;8:550–60

1 vs 2 stents for bifurcation stenting: long term outcome

BBC ONE, Nordic-Baltic Bifurcation I

Long term all-cause mortality in treatment of coronary bifurcation lesion

Pooled Analysis of
The BBC ONE Study and The Nordic Bifurcation Study I

Miles Behan, Niels R. Holm, Adam de Belder, Matti Niemela, Nick Curzen, Kari Kervinen, Andrejs Erglis, Indulis Kumsars, Keith G. Oldroyd, Paal Gunnes, Rodney H. Stables, Michael Maeng, Terje K. Steigen, Lisette Okkels Jensen, Leif Thuesen, Jens F. Lassen, David Hildick-Smith

> On behalf on the British Bifurcation Coronary and Nordic PCI Study Groups

9-Month Trial Endpoints

	Simple (n=457)	Complex (n=456)	P value
Composite (death/MI/TVR) n (%)	46 (10.1)	79 (17.3)	0.001
All cause death n (%)	5 (1.0)	5 (1.0)	0.99
MI total n (%)	22 (4.8)	56 (12.3)	<0.001
-Periprocedural MI n (%)	16 (3.5)	45 (9.9)	<0.001
-Subsequent MI n (%)	6 (1.3)	11 (2.4)	0.22
TVR total n (%)	26 (5.7)	33 (7.2)	0.34
-TVR PCI n (%)	24 (5.3)	20 (4.4)	0.54
-TVR CABG n (%)	2 (0.4)	13 (2.9)	0.004
ST n (%)	3 (0.7)	6 (1.3)	0.31

BBC-Nordic: 5-year total death

EBC

Kissing or not after single stenting ?

WINSTITUT CARDIDVASCULAIRE PARIS SUD Long-term Clinical outcomes of final KB in coronary bifurcation (lesions treated with the 1-stent : results from the COBIS II registry

www.icps.com.fr

CW Yu, J Am Coll Cardiol Intv 2015;8:1297–307

FBC

O INSTITUT CARDIDVASCULAIRE PARIS SUD Long-term Clinical outcomes of final KB in coronary bifurcation lesions treated with the 1-stent: results from the COBIS II registry

Unadjusted Kaplan-Meier Curves in FKB Versus Non-FKB Groups

(A) Kaplan-Meier curves for MACE in FKB versus non-FKB groups in **all patients**. (B) Kaplan-Meier curves for MACE in FKB versus non-FKB groups in **propensity-matched populations**.

www.icps.com.fr

CW Yu, J Am Coll Cardiol Intv 2015;8:1297–307

EBC

O INSTITUT CARDIDVASCULAIRE PARIS SUD Long-term Clinical outcomes of final KB in coronary bifurcation lesions treated with the 1-stent: results from the COBIS II registry

Clinical Outcomes in FKB Group Compared With Non-FKB Group in Propensity-Matched Population During FU Period

	FKB (n = 545)	Non-FKB (n = 545)	Unadjusted HR (95% CI)	p Value	Adjusted HR* (95% Cl)	p Value
All-cause death	17 (3.1)	20 (3.7)	0.67 (0.30-1.48)	0.32	0.68 (0.28-1.63)	0.39
Cardiac death	3 (0.6)	8 (1.5)	0.43 (0.11-1.66)	0.22	0.50 (0.11-2.29)	0.37
MI	4 (0.7)	5 (0.9)	0.50 (0.09-2.73)	0.42	0.18 (0.01-20.36)	0.48
Stent thrombosis†	3 (0.6)	4 (0.7)	0.72 (0.16-3.23)	0.67	0.77 (0.17-3.45)	0.73
Target lesion revascularization	32 (5.9)	43 (7.9)	0.53 (0.30-0.94)	0.03	0.51 (0.28-0.91)	0.02
Main vessel	31 (5.7)	40 (7.3)	0.53 (0.30-0.96)	0.04	0.51 (0.28-0.93)	0.03
Side branch	12 (2.2)	18 (3.3)	0.57 (0.24-1.36)	0.21	0.57 (0.24-1.37)	0.21
Both vessels	23 (4.2)	38 (7.0)	0.47 (0.25-0.88)	0.02	0.47 (0.25-0.90)	0.02
MACE‡	37 (6.8)	53 (9.7)	0.54 (0.32-0.89)	0.02	0.50 (0.30-0.85)	0.01

*Adjusted covariates include hypertension, history of coronary artery bypass graft, and distal RD of SB.

www.icps.com.fr

CW Yu, J Am Coll Cardiol Intv 2015;8:1297–307

O INSTITUT CARDIDVASCULAIRE PARIS SUD Long-term Clinical outcomes of final KB in coronary bifurcation lesions treated with the 1-stent technique: results from the COBIS II registry

Comparative Unadjusted HR of MACE for Subgroups in Propensity-Matching Population

Subgroups	Number of patients	Hazard ratio	95% CI	P for interaction
Age		- AMARINA		
< 65 years	627	- 0.76	0.34-1.33	0.97
≥ 65 years	463	0.49	0.26-0.94	0.27
Sex				
Male	763 -	- 0.75	0.45-1.24	0.15
Female	327	0.36	0.16-0.83	0.10
Diabetes	5			
No	779	0.65	0.39-1.07	0.91
Yes	311	- 0.56	0.26-1.21	0.01
Acute coronary syn	drome			
No	453	0.89	0.49-1.62	0.50
Yes	637	0.46	0.25-0.83	0.50
Left main bifurcation	n			
No	792	0.53	0.32-0.88	0.25
Yes	298	0.94	0.43-2.03	0.20
True bifurcation				
No	571	- 0.72	0.41-1.27	0.44
Yes	519	0.53	0.29-0.99	0.44
SB predilatation	00000 000 00000 0700			
No	864	0.57	0.35-0.93	0.49
Yes	226	0.86	0.36-2.08	0.10
SB reference diame	eter			
<2.5 mm	638	0.66	0.38-1.13	0.04
≥2.5 mm	452	0.60	0.31-1.17	0.01
	F - F - F	1 1		
	0.25 0.5 1	2 4		
	Favors FKB	Favors no FKB		

no significant interactions between the use of FKB and MACE among various subgroups in propensitymatching populations.

www.icps.com.fr

CW Yu, J Am Coll Cardiol Intv 2015;8:1297–307

2nd 3rd generation stents ?

NSTITUT CARDIDVASCULAIRE PARIS SUD 1st vs 2nd generation DES for treatment of bifurcations: 5-year FU of the LEADERS all-comers randomized trial

www.icps.com.fr

Grundeken CCI 00:00–00 (2015)

1st vs 2nd generation DES for treatment of bifurcations: 5-year FU EBC of the LEADERS all-comers randomized trial

Cumulative event rates of patients with at least one bifurcation treated with SES and BES

www.icps.com.fr

Grundeken CCI 00:00–00 (2015)

NSTITUT CARDIDVASCULAIRE PARIS SUD 1st vs 2nd generation DES for treatment of bifurcations: 5-year FU of the LEADERS all-comers randomized trial

Event rates beyond 1 year of patients with at least one bifurcation treated with SES vs BES

www.icps.com.fr

Grundeken CCI 00:00–00 (2015)

O INSTITUT CARDIDVASCULAIRE PARIS SUD 1st - and 2nd -Generation DES in Coronary Bifurcation Lesions: Patient-Level Analysis of the Korean Bifurcation Pooled Cohorts

Lee, J Am Coll Cardiol Intv2015;8:1318-31

EBC

www.icps.com.fr

O INSTITUT CARDIDVASCULAIRE PARIS SUD 1st - and 2nd -Generation DES in Coronary Bifurcation Lesions: Patient-Level Analysis of the Korean Bifurcation Pooled Cohorts

Angiographic and Procedural Characteristics

	First-Generation DES (n = 2,475)			Second-Generation DES (n = 687)		
	1-Stent	2-Stent		1-Stent	2-Stent	
	(n = 1,802)	(n = 673)	p Value	(n = 409)	(n = 278)	p Value
Stent type			<0.001			<0.001
SES	992 (55.0)	422 (62.7)		-	-	
PES	614 (34.1)	208 (30.9)		-	—	
ZES-Splint	194 (10.8)	41 (6.1)		-	-	
EES		1000		356 (87.0)	120 (43.2)	
ZES-Resolute	-	-		53 (13.0)	158 (56.8)	
Others	2 (0.1)	2 (0.3)		_	_	
Stenting techniques						NA
1-stent technique	1,802 (100.0)	-		409 (100.0)	-	
2-stent technique	-	673 (100.0)		-	278 (100.0)	
T-stenting or TAP	-	245 (36.4)		-	147 (52.9)	
Crush		323 (48.0)			98 (35.2)	
Kissing or V-stenting	-	87 (12.9)		-	14 (5.0)	
Culottes	-	15 (2.2)		-	16 (5.8)	
Others	-	3 (0.4)		-	3 (1.1)	

Lee, J Am Coll Cardiol Intv2015;8:1318–31

O INSTITUT CARDIDVASCULAIRE PARIS SUD 1st - and 2nd -Generation DES in Coronary Bifurcation Lesions: Patient-Level Analysis of the Korean Bifurcation Pooled Cohorts

(A to C) Individual components of target lesion failure in 1st -generation DES. (D to F) Individual components of target lesion failure in 2nd generation DES

www.icps.com.fr

Lee, J Am Coll Cardiol Intv2015;8:1318–31

FBC

O INSTITUT CARDIDVASCULAIRE PARIS SUD Prospective Multicentre Clinical Performance Evaluation of 2nd - 3rd Generation ZES to Treat Patients With Bifurcated Coronary Lesions

MACE-free survival according to implantation of a single or double stent

www.icps.com.fr

Burzotta, CCI 87:15–22 (2016)

Does the technique still matter for bifurcation stenting with 2nd and 3rd generation DES: YES !

Which double stenting technique ?

VINSTITUT CARDIOVASCULAIRE PARIS SUD **Randomized Comparison of the Crush Versus the Culotte Stenting for Coronary Artery Bifurcation Lesions**

Major adverse cardiac event-free survival rate at 12 months

www.icps.com.fr

crush

Zheng Chin Med J 2016;129:505-10

W INSTITUT CARDIDVASCULAIRE PARIS SUD Randomized Comparison of the Crush Versus the Culotte Stenting for Coronary Artery Bifurcation Lesions

Individual endpoints after 12 months in crush group and culotte group

Items	Crush group $(n = 150)$	Culotte group $(n = 150)$	Р
Total death, n (%)	2 (1.3)	1 (0.7)	0.624
Cardiac death, n (%)	2 (1.3)	1 (0.7)	0.624
Myocardial infarction, n (%)	7 (4.7)	3 (2.0)	0.335
Stent thrombosis, n (%)	4 (2.7)	2 (1.3)	0.684
Target lesion revascularization, n (%)	8 (5.3)	6 (4.0)	0.584
Target vessel revascularization, n (%)	9 (6.0)	7 (4.7)	0.607
Index lesion restenosis, n (%)	19 (12.7)	9 (6.0)	0.047

Original Colombo crush

www.icps.com.fr

Original Chevalier culotte (main first)

Zheng Chin Med J 2016;129:505-10

DK crush (Chen) > Culotte (Nordic 2) > Classic crush (Zheng) ?

LM: CABG or Stent ?

Randomized Trial of Stents vs Bypass Surgery for LMCA Disease: EBC 5-Year Outcomes of the PRECOMBAT Study

Ahn, J Am Coll Cardiol 2015;65:2198–206

Randomized Trial of Stents vs Bypass Surgery for LMCA Disease: EBC 5-Year Outcomes of the PRECOMBAT Study

Stenting vs CABG for Left Main Stenosis: Cumulative Event Curves of the Primary Endpoint and the Major Secondary Endpoint at the 5-Year FU

www.icps.com.fr

Ahn, J Am Coll Cardiol 2015;65:2198–206

waiting for EXCEL and NOBLE

Provisional vs. two-stent technique for ULM CAD after 10 years FU: EBC A propensity matched analysis

Provisional vs. 2 stent technique after 10 year and 1 year FU before and after propensity score matching (n= 285)

www.icps.com.fr

* p < 0.05

D'Ascenzo International Journal of Cardiology 211 (2016) 37–42

waiting for **EBC main** (1 vs 2 stents for distal LM stenting)