Critical Role of CT Coronary Angiography: Insight from PROMISE Trial– TCT AP 2015

Duke Heart Center

5 Duke Heart Center

Manesh R. Patel, MD Director of Interventional Cardiology Duke University Health System

Disclosures

- Interventional cardiologist
- <u>Research Grants</u>:
 - NHLB, AHRQ, AstraZeneca, Pleuristem, Johnson and Johnson, Maquet / Datascope
- Advisory Board/Consulting:
 - Genzyme, Bayer, Baxter Healthcare, Ortho McNeil Jansen, theHeart.org, Medscape, Maquet, CSI technologies
- Professional Society Roles:
 - Member ACC/AHA AUC Task Force
 - Chair of Writing Group for ACC/AHA Coronary Revascularization Appropriateness Criteria
 - Chair of AHA Diagnostic and Interventional Cath Committee

Question #1

In patients with intermediate pre-test probability of coronary artery disease - what cardiovascular test should be done to diagnose and risk stratify for coronary artery disease?

What do the Guidelines Say?

Chronic Stable Angina Guidelines - All patients with an interpretable ECG should get and Exercise Treadmill (Class I, level of evidence B)

Radionuclide Guidelines - Patients with intermediate pre-test probability of disease and chest pain syndrome - Stress SPECT (Class I, Level of Evidence B)

Echocardiography Guidelines - Patients with chest pain and intermediate pre-test probability - Stress Echo (Class I, no level of evidence noted)

AHRQ Systematic Review


Prepared by Duke Evidence-based Practice Center, Durham, North Carolina

Rowena J. Dolor M.D., M.H.S. Manesh R. Patel M.D. Chiara Melloni, M.D. Ranee Chatterjee, M.D., M.P.H. Amanda J. McBroom, Ph.D. Michael D. Musty Liz Wing, M.A. Remy R. Coeytaux, M.D., Ph.D. Adia K. Ross, M.D., M.H.A. Lori A. Bastian, M.D., M.P.H. Monique Anderson, M.D. Andrzej S. Kosinski, Ph.D. Gillian D. Sanders, Ph.D.

Dolor RJ, et al. Noninvasive Technologies for the Diagnosis of Coronary Artery Disease in Women. Agency for Healthcare Research and Quality, January, 2012. Rockville, MD. Available at: www.effectivehealthcare.ahrq.gov/reports/final.cfm.

Literature Search Results

America Constitutions in Presentity and Constity

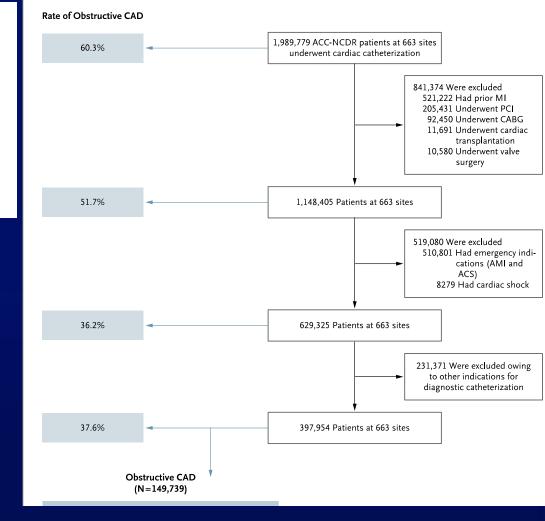
Summary of Key Findings (KQ1): Diagnostic Accuracy of NITs in Women vs Men

Accuracy of NITs for diagnosing CAD in men compared with women from mixed populations

Modality	Studies	Sen	sitivity	p Value	Specificity		p Value
	n	Men	Women	Women vs. Men	Men	Women	Women vs. Men
ECG	20	64%	61%	0.57	81%	65%	0.007
ECHO	9	77%	78%	0.80	81%	86%	0.50
SPECT	11	88%	82%	0.36	74%	81%	0.47
CMR	3	86%	78%	0.53	72%	84%	0.12
СТА	7	97%	94%	0.36	89%	87%	0.87

Dolor RJ, et al. Agency for Healthcare Research and Quality 2012. Rockville, MD.

How do we currently perform – predicting obstructive coronary disease?


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Low Diagnostic Yield of Elective Coronary Angiography

Manesh R. Patel, M.D., Eric D. Peterson, M.D., M.P.H., David Dai, M.S., J. Matthew Brennan, M.D., Rita F. Redberg, M.D., H. Vernon Anderson, M.D., Ralph G. Brindis, M.D., and Pamela S. Douglas, M.D.

- 38% Stenoses ≥50% LM or ≥ 70% epicardial
- 41% by any ≥ 50%
- 39% had all stenoses
 <20%

PROspective Multicenter Imaging Study for Evaluation of Chest Pain

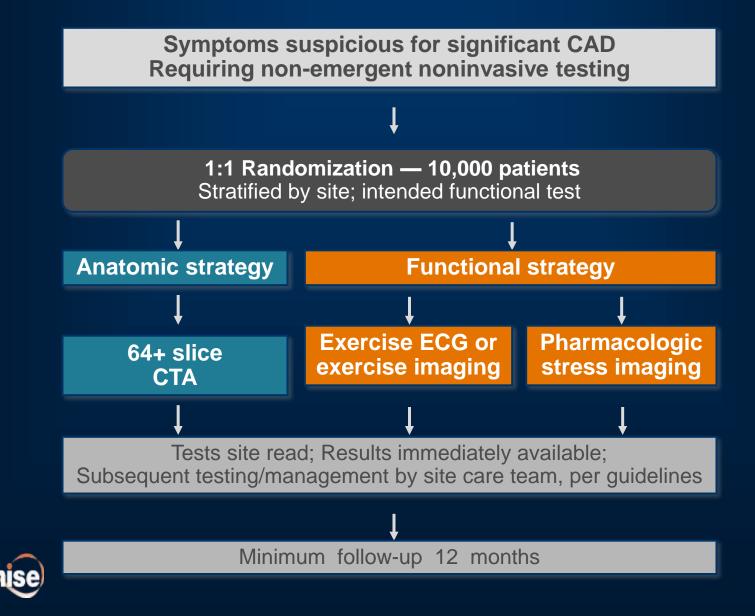
ORIGINAL ARTICLE

Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease

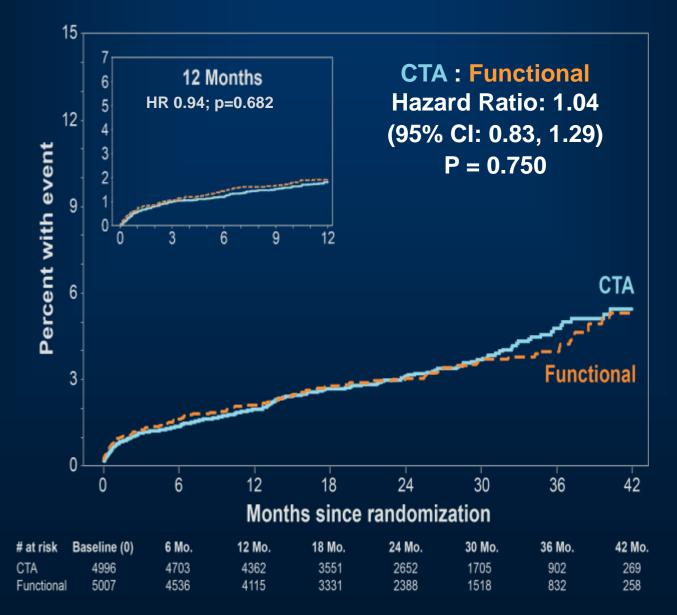
Pamela S. Douglas, M.D., Udo Hoffmann, M.D., M.P.H., Manesh R. Patel, M.D.,
Daniel B. Mark, M.D., M.P.H., Hussein R. Al-Khalidi, Ph.D., Brendan Cavanaugh, M.D.,
Jason Cole, M.D., Rowena J. Dolor, M.D., Christopher B. Fordyce, M.D.,
Megan Huang, Ph.D., Muhammad Akram Khan, M.D., Andrzej S. Kosinski, Ph.D.,
Mitchell W. Krucoff, M.D., Vinay Malhotra, M.D., Michael H. Picard, M.D.,
James E. Udelson, M.D., Eric J. Velazquez, M.D., Eric Yow, M.S.,
Lawton S. Cooper, M.D., M.P.H., and Kerry L. Lee, Ph.D.,
for the PROMISE Investigators*

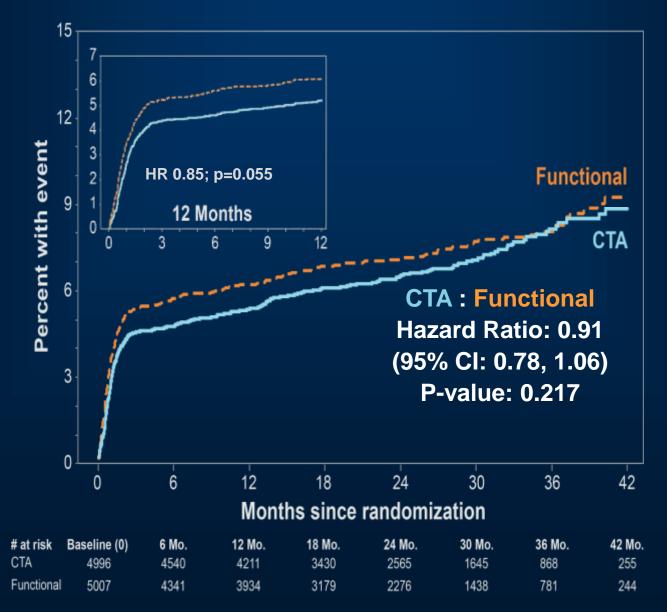
Supported by R01HL098237, R01HL098236, R01HL98305 and R01HL098235 from the National Heart, Lung, and Blood Institute

MASSACHUSETTS

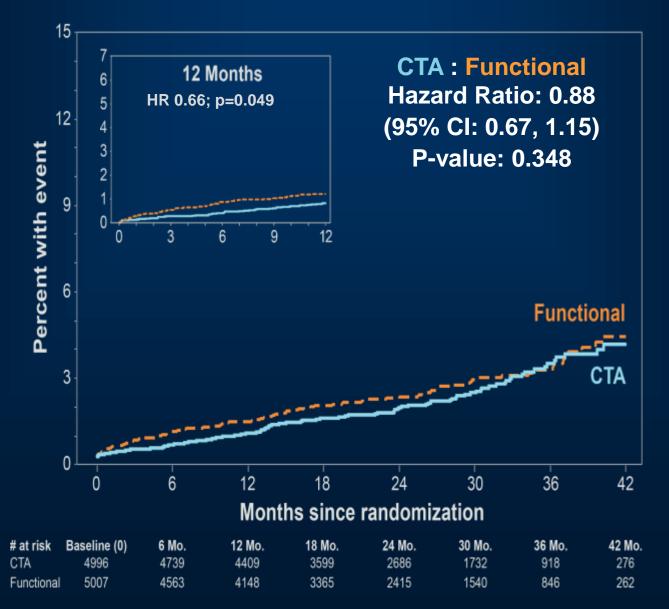

GENERAL HOSPITAL

- New onset chest pain accounts for approximately 4 million stress tests annually in the United States
- Limited randomized data to guide care
 - Little consensus about which test is preferable
 - Unknown impact of testing on health-related outcomes
- Current practice may include testing of very low risk populations and catheterization of patients without obstructive CAD


PROMISE Trial Design


Baseline Characteristics

		CTA (n=4996)	Functional (n=5007)
_	Age — mean ± SD, yrs	60.7 ± 8.3	60.9 ± 8.3
Demographics	Female sex — %	52	53
	Non-white race	16	15
	Hypertension — %	65	65
	Diabetes — %	21	22
	Dyslipidemia — %	67	68
Risk factors	Family hx premature CAD — %	33	32
	Current or past smoking — %	51	51
1° symptom	Chest pain or DOE — %	88	88
Anginal type	Typical or atypical — %	89	89
Pretest probability CAD	Diamond–Forrester/CASS – mean %	53.4	53.2


Primary Endpoint: Death, MI, Unstable Angina, Major Complications

Secondary Endpoint: Primary Endpoint + Catheterization w/o Obstructive CAD

Secondary Endpoint: Death or Non-fatal MI

	CTA (n=4996)	Functional (n=5007)	Adj HR (95% CI)	P value
Primary endpoint composite	164	151	1.04 (0.83– 1.29)	0.750
All-cause death	74	75		
Nonfatal MI	30	40		
Unstable angina hosp	61	41		
Major procedural complications	4	5		
Primary endpoint plus cath without obstructive CAD	332	353	0.91 (0.78– 1.06)	0.217
Death or nonfatal MI	104	112	0.88 (0.67– 1.15)	0.348
Death, nonfatal MI, or unstable angina hospitalization	162	148	1.04 (0.84– 1.31)	0.703

Secondary Endpoint: Catheterization Without Obstructive CAD ≤90 days

	CTA (n=4996)	Functional (n=5007)	P value
Invasive catheterization without obstructive CAD — N (%)	170 (3.4)	213 (4.3)	0.022
Invasive catheterization	609 (12.2%)	406 (8.1%)	
Revascularization	311 (6.2%)	158 (3.2%)	
CABG	72	38	

Secondary Endpoint: Cumulative Radiation Exposure ≤90 days

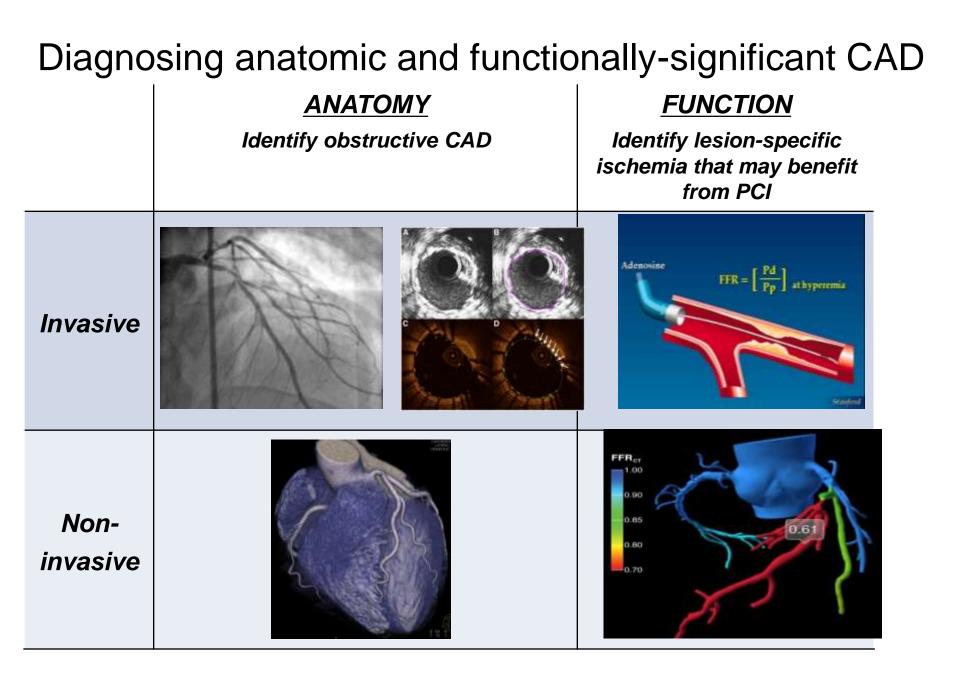
Mean ± SD; mSv	CTA (n=4996)	Functional (n=5007)	P value
All patients	12.0 ± 8.5	10.1 ± 9.0	<0.001
No radiation exposure	4%	33%	
Intended nuclear test randomization stratum	12.0 ± 8.4	14.1 ± 7.6	<0.001
Intended stress echo randomization stratum	12.6 ± 9.0	1.3 ± 4.3	<0.001
Intended exercise ECG randomization stratum	10.4 ± 7.8	2.3 ± 5.4	<0.001

- PROMISE enrolled a symptomatic, intermediate risk population for whom testing is currently recommended
- There is a low event rate in this contemporary population
- There were no significant differences in outcomes between an initial anatomic (CTA) or functional testing strategy with respect to the primary endpoint overall or in any subgroup
- An initial CTA strategy was associated with a lower rate of invasive catheterization without obstructive CAD
- Radiation exposure was higher in CTA arm overall, but lower in those patients for whom a nuclear test was specified prerandomization as the intended functional test, but who were randomized to CTA

Conclusions

- Our results suggest that CTA is a viable alternative to functional testing
- These real-world results should inform noninvasive testing choices in clinical care as well as provide guidance to future studies of diagnostic strategies in suspected heart disease

ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 Multimodality Appropriate Use Criteria for the Detection and Risk Assessment of Stable Ischemic Heart Disease


A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons

Multimodality Writing Group for Stable Ischemic Heart Disease	Michael J. Wolk, MD, MACC, <i>Chair</i> Steven R. Bailey, MD, FACC, FSCAI, FAHA John U. Doherty, MD, FACC, FAHA Pamela S. Douglas, MD, MACC, FAHA, FASE Robert C. Hendel, MD, FACC, FAHA, FASNC	Christopher M. Kramer, MD, FACC, FAHA James K. Min, MD, FACC Manesh R. Patel, MD, FACC Lisa Rosenbaum, MD Leslee J. Shaw, PHD, FACC, FASNC, FAHA Raymond F. Stainback, MD, FACC, FASE Joseph M. Allen, MA
Technical Panel	 Ralph G. Brindis, MD, MPH, MACC, Moderator* Christopher M. Kramer, MD, FACC, Writing Committee Liaison* Leslee J. Shaw, PhD, FACC, FASNC, FAHA, Writing Committee Liaison* Manuel D. Cerqueira, MD, FACC, FASNC† Jersey Chen, MD, FAHA‡ Larry S. Dean, MD, FACC, FAHA, FSCAI§ Reza Fazel, MD, FACC* 	 W. Gregory Hundley, MD, FACC Dipti Itchhaporia, MD, FACC* Paul Kligfield, MD, FACC, FAHA* Richard Lockwood, MD* Joseph Edward Marine, MD, FACC¶ Robert Benjamin McCully, MD, FACC, FASE# Joseph V. Messer, MD, MACC* Patrick T. O'Gara, MD, FACC* Richard J. Shemin, MD, FACC** L. Samuel Wann, MD, MACC†† John B. Wong, MD*

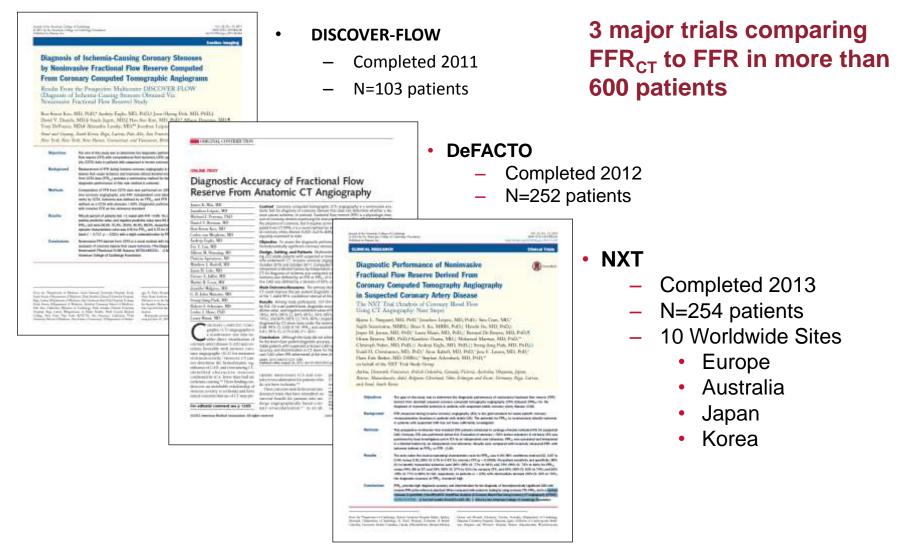

AUC will be informed by studies

Table 1.1. Symptomatic

	Refer to pages 16 and 17 for relevant definitions, in particular Table A and text for age, sex, symptom presentation, and risk factors relevant to each pre-test probability category							
Indica	tion Text	Exercise ECG	Stress RNI	Stress Echo	Stress CMR	Calcium Scoring	ССТА	Invasive Coronary Angiography
1.	 Low pre-test probability of CAD ECG interpretable AND able to exercise 	A	R	М	R	R	R	R
2.	 Low pre-test probability of CAD ECG uninterpretable OR unable to exercise 		A	A	М	R	М	R
3.	 Intermediate pre-test probability of CAD ECG interpretable AND able to exercise 	A	A	A	М	R	M	R
4.	 Intermediate pre-test probability of CAD ECG uninterpretable OR unable to exercise 		Α	A	A	R		М
5.	High pre-test probability of CAD ECG interpretable AND able to exercise	М	A	A	A	R	М	A
6.	High pre-test probability of CADECG uninterpretable OR unable to exercise		Α	A	A	R	М	A

HeartFlow FFR_{CT} Clinical Trial Data is growing

Conclusions

- CTA for chest pain is a viable alternative to stress testing and in the PROMISE trial showed
 - Less invasive cardiac catheterization without obstructive disease
 - Less radiation compared to Stress Nuclear
 - Favorable 1 year outcomes
- CT FFR is an emerging technology that may help patients with chest pain getting a CTA

