The Critical Role of Lesion Preparation for BRS: Effect of plaque morphology, components and novel devices

Giulio Guagliumi, MD, FESC

CONFLICT OF INTEREST

GIULIO GUAGLIUMI, MD

RESEARCH/EDUCATIONAL GRANTS THROUGH THE HOSPITAL

- > ABBOTT VASCULAR
- BOSTON SCIENTIFIC
- > ST. JUDE MEDICAL

CONSULTING

- BOSTON SCIENTIFIC
- > ST. JUDE MEDICAL

JACC: CARDIOVASCULAR INTERVENTIONS © 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 9, NO. 1, 2016 155N 1936-8798/\$36.00 http://dx.doi.org/10.1016/j.jcin.2015.09.021

EDITORIAL COMMENT

Who Is Thrombogenic: The Scaffold or the Doctor? Back to the Future!*

Antonio Colombo, MD, | Neil Ruparelia, MB BS, DPHR. | 1

Recent meta-analyses have raise concerns regarding a higher incidence of scaffold thrombosis when compared to metallic DES

 \bigcirc

Lipinski M et al. J Am Coll Cardiol Intv 2016;9: 12-24 Cassese et al. Lancet 2015

Mechanical properties of BRS are inherently different from permanent metallic stent

Onuma Y, Serruys P. Circulation 2011;123:779-97

- > The design of current <u>DES have evolved becoming more forgiving</u> toward procedural optimization
- On the contrary, current <u>BRS are less forgiving to suboptimal implantation</u> due to its limits.

ORIGINAL ARTICLE

Everolimus-Eluting Bioresorbable Scaffolds for Coronary Artery Disease

Stephen G. Ellis, M.D., Dean J. Kereiakes, M.D., D. Christopher Metzger, M.D.,

.

Lesion Approach in Recent Studies

Scaffold expansion: prox, central, distal segments

Brown AJ, West NEJ et al. Catheter Cardiovasc Interv 2014; 84: 37-45

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 8, NO. 6, 2015 ISSN 1936-8798/\$36.00 http://dx.ddi.org/10.1016/j.jcin.2014.12.244

Clinical, Angiographic, Functional, and Imaging Outcomes 12 Months After Implantation of Drug-Eluting Bioresorbable Vascular Scaffolds in Acute Coronary Syndromes

Tommaso Gori, MD, PHD,* Eberhard Schulz, MD,* Ulrich Hink, MD,* Madeleine Kress,* Nadja Weiers,*

Patient Characteristics (n=133)	
Clinical Presentation (UA, NSTEMI, STEMI)	26(19.6%), 57(42.9%), 50(37.6%)
Procedural characteristics (n=166)	
Pre-dilation	100%
Post-dilation	19(11%)

QCA Results *	Prox Scaffold Edge	In-scaffold	Distal Scaffold Edge
% Diameter Stenosis			
After implantation	8±7	16±8	9±8
At follow-up	9±7	18±13	9±7

* online appendix

ABSORB REGISTRIES

Lesion characteristics	ASSURE N=183	GHOST N=1189	ABSORB FIRST N=1801	EXPAND n-=200
B2/C (%)	64,6%	52,2%	46,7%	41,1%
Bifurcation lesion (%)	14,1%	23,1%	11,9%	29,1%
CTO (%)	4%	6,7%	10,5%	5,8%
Calcified lesion (%)	15,7%	0%	20,04%	45,8%
Lesion length (mm)	15 +/- 11	19,4 +/- 14,4	18,2 +/- 8,2	25,4+/- 13,5
Procedural characteristics				
Pre-dilatation	100%	95,9%	94,3%	89,2%
Post-dilatation	12,5%	52,3%	48,3%	50,2%

GHOST EU Procedural characteristics

		100%	
Pre-Dilatation	1670/1736 (96.2%)	90% -	
Cutting balloon	21/1723 (1.2%)	80% -	
Scoring balloon	47/1722 (2.7%)	700/	
Residual DS ≥ 40% after pre-dilatation	254/911 (28%)	/0% -	
Post-Dilatation	908/1736 (52.3%)	60% -	
Mean scaffold Length/Les (n=1722)	27.6±16.7	50% -	99.7%
N. of scaffold/Les	1.28±0.64	40% -	
Overlapping/Les	364/1736 (21%)	30% -	
OCT	206/1498 (14%)	20% -	
IVUS	240/1498 (16%)	10%	

Technical Success*

0% +

* Residual in-scaffold diameter stenosis < 30%

The effect of coronary artery plaque composition, morphology and burden on Absorb bioresorbable vascular scaffold expansion and eccentricity — A detailed analysis with optical coherence tomography

Elizabeth Shaw^{a,b}, Usaid K. Allahwala^a, James A. Cockburn^a, Thomas C.E. Hansen^a, Jawad Mazhar

Calcific Plaque Effect on Scaffold Expansion and Eccentricity

International Journal of Cardiology 2015;184:230-6

Calcium significantly increases strut malapposition

Brown AJ, West NEJ et al. Catheter Cardiovasc Interv 2014; 84: 37-45

Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective

Corrado Tamburino¹, MD, PhD; Azeem Latib², MD; Robert-Jan van Geuns³, MD; Manel Sabate⁴, MD;

14 European centres with a high volume of BVS procedures

BRS LESION PREPARATION		
How frequently do you perform predilation before BVS	30-60%	14%
implantation?	60-90%	14%
	> 90% of the cases	71%
What is your first choice balloon for predilation ?	semi-compliant	50%
	non-compliant	50%
How frequently do you use scoring or cutting balloons	<30% of the cases	93%
before BVS implantation?	30-60%	7%
Do you routinely use intravascular imaging to decide	Yes	7%
whether specific preparation is required?	Νο	93%

LESION PREPARATION

- Scaffold expansion
 - Less radial force
 - Inadequate lesion preparation may correlate with underexpansion

Brown et al. Cath Cardiovasc Interv 2014;84:37-45

Mattesini et al JACC Interv 2014:7:741-50

Danzi et al Cath Cardiovasc Interv 2015, 13 August, DOI: 10.1002/ccd.26148

- 1:1 pre-dilation with NC or semi-compliant
- Low threshold for debulking devices in complex lesion settings

VESSEL SIZING & SCAFFOLD SIZE		
Do you routinely size your vessel with balloons?	Yes	71%
	No	29%
Do you routinely use QCA for vessel sizing	Yes	14%
	Νο	86%
Which we call reference do you use 0		
which vessel reference do you use ?	Proximal	64%
which vessel reference do you use ?	Proximal Distal	64% 9%
which vessel reference do you use ?	Proximal Distal Interpolated	64% 9% 36%
Do you routinely use intravascular imaging for sizing?	Proximal Distal Interpolated yes,IVUS	64% 9% 36% 0%
Do you routinely use intravascular imaging for sizing?	Proximal Distal Interpolated yes,IVUS yes,OCT	64% 9% 36% 0% 14%

EuroIntervention 2015;11:45-52 published online ahead of print January 2015

Distribution of Dmax Prox and Dmax Distal related to the nominal device size in the ABSORB II, Extend and B (n=1248)

Ishibashi Y et al. J Am Coll Cardiol Intv 2015; 8: 1715-26

BRS OPTIMIZATION

How frequently do you post-dilate the scaffold ?	<30% of the cases 30-60% 60-90% > 90% of the cases	0% 14% 21% 64%
Which ballon size for post-dilation ?	Same size as BVS 0.25 mm larger 0.50 larger	29% 14% 57%
What is the typical post-dil balloon pressure ?	< 12 13-16 atm > 16 atm	0% 50% 50%
What is your goal after scaffold implantation?	<10% residual stenosis <30% residual stenosis <50% residual stenosis	86% 14% 0%

EuroIntervention 2015;11:45-52 published online ahead of print January 2015

IMPORTANCE OF POST-DILATION

- Acute lumen gain is lower for current BVS than metallic stents with similar pressures even in simplest lesion subsets
- High post-dilation rates (over 90%) and pressure (over 20 atm) were associated with lower rates of ST

Caiazzo et al. 2015, Int J Cardiol 2015; 201: 129-36

RISK WITH OVER-EXPANSION

Over-expansion might cause scaffold disruption (above limit, kissing balloon) and a focal loss of mechanical support

Foin et al. Eurointervention 2015, Jul 8; 11(3) Epub ahead of print

- Non-oversized NC balloon with very high pressure
- Balloon/Scaffold diameter 1:1, max +0.5 mm

The role of intravascular imaging

After pre-dilation with NC 1:1 balloon

After BVS implantation at 14 atm

After post-dilation with NC at HP (22

ABSORB Biodegradable Stents Versus Second-Generation Metal Stents

A Comparison Study of 100 Complex Lesions Treated Under OCT Guidance

Alessio Mattesini, MD,*† Gioel G. Secco, MD,*† Gianni Dall'Ara, MD,*

A: Proximal Reference Vessel Area (PRVA) = 10.8 mm²

B: Cross section with the Minimum Eccentricity Index = (Minimum diameter/Maximum diameter) =

(2.34 mm/3.66 mm) = 0.64

C: Minimal Lumen Area (MLA) = 6.9 mm²

Residual Area Stenosis = (1- MLA/RVA*) X 100 =

(1-6.9mm²/8.9 mm²) X 100 = 22.5 %

D: Distal Reference Vessel Area (DRVA) = 7.1 mm²

Reference Vessel Area (RVA) =

(PRVA + DRVA)/2 =

(10.8 mm² + 7.1 mm²) / 2 = 8.9 mm²

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 66, NO. 17, 2015 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2015.08.863

EDITORIAL COMMENT

Very Late Thrombosis After Bioresorbable Scaffolds Cause for Concern?*

Gregg W. Stone, MD, Juan F. Granada, MD;

"However, the BVS visually appear under-expanded in all 4 cases, as confirmed by the residual angiographic diameter stenosis ranging from 18.6% to 26.7%. Careful lesion preparation (pre-dilation) and optimal scaffold expansion (post-dilation with non-compliant balloons at high pressure) are required to maximize lumen gain with first-generation BVS".

Very Late BVS Thrombosis 18 months

The role of accurate sizing and complete expansion

*Bioresorbable Vascular Scaffold (BVS Abbott Vascular) are not approved for sale in United States

INTRAVASCULAR IMAGING: PRE/POST-PROCEDURE USE

To Assist Sizing

BVS requires more careful sizing (more difficult to correct after deployment)

Undersize — Malapposition — ST risk

Raber et al. JACC 2015, 66: 1901-14 Karanasos et al. Circ Cardiovasc Interv: 2015: 8 e002369

Oversize ______ Increased foot print _____ Worse clinical outcomes SB occlusion

Kawamoto et al. JACC Intv 2016; 9:299-300 Ishibashi et al. JACC Intv 2015:8;1715-1723 Muramatsu et al. JACC Intv 2013:6;247-57

To avoid, detect and correct

Underexpansion (even after HP post-dil <u>in fibrocalcific lesions: lesion preparation</u>) Edge inury: possible due to agressive pre- and post- dilatation Malapposition

Low threshold for intravascular imaging especially in complex settings

THE CRITICAL ROLE OF LESION PREPARATION FOR BVS: PRACTICAL CONSIDERATIONS

- 1. BVS <u>should not be implanted into lesions that cannot be adequately prepared</u>
- **2. P**repare the lesion with 1:1 NC (or semi-compliant) balloon to reference diameter
- **3.** Use intravascular imaging or the pre-dilation balloon for sizing (QCA tends to underestimate)
- 4. Properly select scaffold diameter relative to proximal ref. vessel diameter (but check tapering!)
- 5. Low threshold for debulking devices in complex lesions settings (diffuse, fibro-calcific)
- **6. P**ost-dilate with high pressure non-compliant balloon (a maximum of nominal scaffold size + 0.5 mm, making sure that full expansion is achieved)
- 7. Prescribe dual anti-platelet therapy for no less then 6 months and preferably for 12 months

Scaffold is important, but doctor is also important.