The Latest Update on Non-Invasive Imaging

SYNTAX I, SYNTAX II, SYNTAX III: From Invasive to Non-invasive Aassessment of Coronary Stenosis

Patrick W. Serruys, MD, PhD

Rafael Cavalcante, MD, PhD Yoshinobu Onuma, MD, PhD

Imperial College London, United Kingdom Erasmus Medical Center, Rotterdam, The Netherlands

21st CardioVascular Summit

TCTAP2016

Erasmus MC University Mathetic Contrast Returns 2 a fung

Tuesday 27th April 2016 Time 3:12 – 3:27 pm Presentation Theatre Level 1

From anatomy to comorbidities, to functional assessment, to non invasive assessment, to virtual Heart Team (Syntax II).

Cappodano EHJ

From anatomy to comorbidities, to functional assessment, to non invasive assessment, to virtual Heart Team (Syntax II).

Cappodano EHJ

Overview of the talk

- What is the functional Syntax Score?
- Anatomical Syntax score combined with clinical variables: Syntax score II, decision making score based on interaction
- How reliable is the Syntax Score? (Site vs. Corelab)
- How to make the anatomical syntax score more objective and quantitative? Noninvasive Syntax score
- How to make it functional and noninvasive? Syntax Score III

Functional SYNTAX Score for Risk Assessment in Multivessel Coronary Artery Disease

Chang-Wook Nam, MD, PHD,*† Fabio Mangiacapra, MD,‡ Robert Entjes, MD,§ In-Sung Chung, MD, PHD,† Jan-Willem Sels, MD,§ Pim A. L. Tonino, MD, PHD,§ Bernard De Bruyne, MD, PHD,‡ Nico H. J. Pijls, MD, PHD,§ William F. Fearon, MD,* on behalf of the FAME Study Investigators

Stanford, California; Daegu, Korea; Aalst, Belgium; and Eindhoven, the Netherlands

Objectives	This study was aimed at investigating whether a fractional flow reserve (FFR)-guided SYNTAX score (SS), termed "functional SYNTAX score" (FSS), would predict clinical outcome better than the classic SS in patients with multi- vessel coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI).
Background	The SS is a purely anatomic score based on the coronary anglogram and predicts outcome after PCI in patients with multivessel CAD. FFR-guided PCI improves outcomes by adding functional information to the anatomic information obtained from the anglogram.

Recalculating SYNTAX Score by incorporating ischemiaproducing lesions as determined by FFR decreases the number of higher-risk patients and better discriminates risk for the adverse events in patients with multivessel disease undergoing PCI.

Functional SYNTAX Score For Risk Assessment in MVD

Nam et al. JACC Sep 2011

Without Hyperemia

iFR

Hyperemia

FFR

Pd (mean of entire cardiac Cycle)

FFR =

Pa (mean of entire cardiac Cycle)

Hybrid iFR-FFR decision-making strategy: implications for enhancing universal adoption of physiology-guided coronary revascularisation

Overview of the talk

- What is the functional Syntax Score?
- Anatomical Syntax score combined with clinical variables: Syntax score II, decision making score based on interaction
- How reliable is the Syntax Score? (Site vs. Corelab)
- How to make the anatomical syntax score more objective and quantitative? Noninvasive Syntax score
- How to make it functional and noninvasive? Syntax Score III

12-06899R2 S0140-6736(13)60141-5 Embargo: [add date when known]

Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial

€

Friedrich W Mohr, Marie-Claude Morice, A Pieter Kappetein, Ted E Feldman, Elisabeth Ståhle, Antonio Colombo, Michael J Mack, David R Holmes Jr, Marie-angèle Morel, Nic Van Dyck, Vicki M Houle, Keith D Dawkins, Patrick W Serruys

THELANCET-D-12-08421

50140-6736(13)60108-7

Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II

Vasim Farooq*, David van Klaveren*, Ewout W Steyerberg, Emanuele Meliga, Yvonne Vergouwe, Alaide Chieffo, Arie Pieter Kappetein, Antonio Colombo, David R Holmes, Michael Mack, Ted Feldman, Marie-Claude Morice, Elisabeth Ståhle, Yoshinobu Onuma; Marie-Angèle Morel, Hector M Garcia-Garcia, Gerrit Anne Van, Keith D Dawkins, Friedrich W Mohr, Patrick W Serruys

SYNTAX Score II

EVCEI

Findings that were validated in the multinational DELTA Registry...

SYNTAX Score II Variables

SYNTAX Score II was developed by applying a Cox proportional hazards model to the results of SYNTAX trial obtaining a combination of clinical and anatomical independent predictors of 4 years all-cause mortality:

1. Farooq V et al. Lancet 2013; 381: 639–50

SYNTAX trial LM cohort

Favored CABG Overall 50.1% >95%CI 11.5%

Favored PCI Overall 49.9% >95%CI 8.8%

79.7% within 95%PI **Equipoise**

Farooq and Serruys Lancet 2013;381:639-50

Calibration plots for the sSS based SS II

Calibration plots are shown for the sSS based SS II model predicting 4-year risk of mortality. The triangles indicate the observed frequencies by quintile of predicted probabilities. Good agreement was found between the observed and predicted mortality for each group.

Tools and Techniques - Clinical: SYNTAX score II calculator

To be made public at EuroPCR 2016!

Yohei Sotomi¹, MD; Carlos Collet¹, MD; Rafael Cavalcante², MD, PhD; Marie-Angèle Morel³, BSc; Pannipa Suwannasom^{1,2,4}, MD; Vasim Farooq⁵, MD, PhD; Menno van Gameren¹, MD; Yoshinobu Onuma^{2,3}, MD, PhD; Patrick W. Serruys^{6*}, MD, PhD

1. Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 2. Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands; 3. Cardialysis, Rotterdam, The Netherlands; 4. Northern Region Heart Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; 5. Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester and Manchester Heart Centre, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, United Kingdom; 6. International Centre for Circulatory Health, NHLI, Imperial College London, London, United Kingdom

SYNTAX Trial II

Inclusion: All-Comers, angiographic, de-novo 3-vessel disease without left main involvement (visual % diameter stenosis ≥50%)

Overview of the talk

- What is the functional Syntax Score?
- Anatomical Syntax score combined with clinical variables: Syntax score II, decision making score based on interaction
- How reliable is the Syntax Score? (Site vs. Corelab)
- How to make the anatomical syntax score more objective and quantitative? Noninvasive Syntax score
- How to make it functional and noninvasive? Syntax Score III

Correlation between the 'Corelab' and 'Site' SS

Non-invasive assessment of SYNTAX score from MSCT

- Segment with disease
- Length of disease
- Tortuosity
- Calcification
- Diffuse disease etc.

anatomic Syntax score 24 functional Syntax score 19

According to the ESC/ACC/AHA guideline

Correlation between angiographic Syntax Score vs. MSCT Syntax Score II

From anatomy to comorbidities, to functional assessment, to non invasive assessment, to virtual Heart Team (Syntax II).

Cappodano EHJ

Algorithm of Heart Team decision making based on noninvasive and invasive imaging

Which lesion is causing myocardial ischemia?

Angiography

KOR 63

Which lesion is causing myocardial ischemia?

No significant lesion

Angiographic assessment Lesion 1 – mid RCA Seg 2: 2 (1x2) Invasive FFR No significant lesion

A subtotal Score of lesion: 2

Which lesion is causing myocardial ischemia?

KOR 63

Which lesion is causing myocardial ischemia?

1.Lmain (5 x2) 2.Trifurcation (1,1,0,0) 4 3. LAD ,Segment 6 (3.5 x2) calcified 1 4.Intermediate (1 x2) Lesion>20 mmm (1),calcified, 1 =Functional SxS 24

Lesion – LAD and Intermediate		
Seg 6:	7 (3.5x2)	
Seg 12:	2 (1x2)	
Trif 0,1,1,0	4	
Lesion >20mm	1	
Angiographic SSx:	14	

Dream Diagnostic tool #1: non-invasive FFR

Treatment planning prior to invasive procedures Virtual PCI and post-PCI FFR_{CT}

Thank You!

Volume 11 - Number 13 - April 2016 - ISSN: 1774-024X EuroIntervention

Asia Intervention

www.asiaintervention.org

Volume 2 - Number 1 - January 2016 - ISSN: 2426-3958

CORONARY INTERVENTIONS

- 1457 COmplex coronary Bifurcation lesions: RAndomized comparison of a strategy using a dedicated self-expanding biolimus-eluting stent versus a culotte strategy using everolimus-eluting stents: primary results of the COBRA trial C. Dubois, T. Adriaenssens, et al
- 1468 Significance of prior percutaneous revascularisation in patients with acute coronary syndromes: insights from the prospective PROSPECT registry A. Iñiguez, G.W. Stone, et al
- 1475 Clinical outcomes following "off-label" versus "established" indications of bioresorbable scaffolds for the treatment of coronary artery disease in a real-world population T. Miyazaki, A. Colombo, et al.
- 1479 A novel approach to treat in-stent restenosis: 6- and 12-month results using the everolimus-eluting bioresorbable vascular scaffold P. Jamshidi, F. Cuculi, et al
- 1487 Patient preference regarding assessment of clinical follow-up after percutaneous coronary intervention: the PAPAYA study M.M. Kok, M.J. Elzerman, et al.
- 1495 Does access to invasive examination and treatment influence socioeconomic differences in case fatality for patients admitted for the first time with non-ST-elevation myocardial infarction or unstable angina? S. Mårtensson, M. Osler, et al
- 1503 Virtual reality training in coronary angiography and its transfer effect to real-life catheterisation lab U.I. Jensen P. Tornvall et al.

1511 A disaster never comes alone: total ostial occlusion of the left main coronary artery with an anomalous origin P. Rodrigues, S. Torres, et al

INTERVENTIONS FOR VALVULAR DISEASE AND HEART FAILURE

- 1512 Left atrial appendage occlusion with the AMPLATZER Amulet device: an expert consensus step-by-step approach A Tzikas H Omran et al
- 1522 The prognostic value of acute and chronic troponin elevation after transcatheter aortic valve implantation J.M. Sinning, N. Werner, et al
- 1530 Emergency transcatheter aortic valve replacement in patients with cardiogenic shock due to acutely decompensated aortic stenosis C. Frerker, K.H. Kuck, et al
- 1537 First-in-man report of residual "intra-clip" regurgitation between two MitraClips treated by AMPLATZER Vascular Plug II M. Taramasso, F. Maisano, et al
- 1541 First transfermoral percutaneous edge-to-edge repair of the tricuspid valve using the MitraClip system T. Wengenmayer, S. Grundmann, et al
- 1545 First Lotus aortic valve-in-valve implantation to treat degenerated Mitroflow bioprostheses F. Castriota, A. Cremonesi, et al
- 1549 Direct Flow valve-in-valve implantation in a degenerated mitral bioprosthesis G Bruschi F De Marco et al

CORONARY INTERVENTIONS

- 19 Late angiographic and clinical outcomes of the novel BioMime[™] sirolimus-eluting coronary stent with ultra-thin cobalt-chromium platform and biodegradable polymer for the treatment of diseased coronary vessels: results from the prospective, multicentre meriT-2 clinical trial
- 28 Impact of chronic lung disease after percutaneous coronary intervention in Japanese patients with acute coronary syndrome
- 36 Distribution characteristics of coronary calcification and its substantial impact on stent expansion: an optical coherence tomography study
- 44 Smooth arterial healing after paclitaxel-coated balloon angioplasty for in-stent restenosis assessed by optical frequency domain imaging
- Mediastinal haematoma complicating percutaneous 48 coronary intervention via the radial artery

INTERVENTIONS FOR STRUCTURAL HEART DISEASE AND HEART FAILURE

- 49 Comparison of aortic annulus dimensions between Japanese and European patients undergoing transcatheter aortic valve implantation as determined by multi-detector computed tomography: results from the OCEAN-TAVI and a European single-centre cohort
- 57 Combined percutaneous transvenous mitral commissurotomy and left atrial appendage closure as an alternative to anticoagulation for rheumatic atrial fibrillation

EDITORIAL

- 7 Evolution and current status of interventional cardiology in India
- 10 Tailoring TAVI in Asia: insights from MSCT
- 13 Opening the shell for better stent results

ASIA-PACIFIC HOTLINES AT TCT 2015

- 16 Asia-Pacific Hotlines at TCT 2015: a prospective randomised trial of paclitaxel-eluting vs. everolimuseluting stents in diabetic patients with coronary artery disease (TUXEDO)
- 17 Asia-Pacific Hotlines at TCT 2015: bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease (ABSORB China Trial)
- 18 Asia-Pacific Hotlines at TCT 2015: evaluation of initial surgical versus conservative strategies in patients with asymptomatic severe aortic stenosis (The CURRENT AS registry)

HOW SHOULD | TREAT?

- 58 How should | treat a patient with critical stenosis of a bifurcation of the left main coronary artery with an acute angulation between the left main artery and the left circumflex artery?
- 65 How should I treat a percutaneous posteromedial mitral periprosthetic paravalvular leak closure in a bioprosthesis with no radiopaque ring?

Official Journal of EuroPCR and the European Association of Percutaneous Cardiovascular Interventions (EAPCI)

www.eurointervention.org

CHIEF EDITORS Runlin Gao, Upendra Kaul, Takeshi Kimura, Seung-Jung Park, Huay Cheem Tan

CONSULTING EDITORS Christoph Naber, Richard Ng SENIOR CONSULTING EDITOR Patrick W. Serruys