20TH CARDIOVASCULAR SUMMIT

How to Optimize Outcomes Technical Consideration

Alaide Chieffo, MD

San Raffaele Scientific Institute, Milan, Italy

BRS use in real world registries

	patients	type B2/C (%)	Follow up (months)	MACE (%)	TLR (%)	Scaffold thrombosis (%)
Costopoulos et al. 2014	92	83.9	6	3.3	3.3	0 (d)
ABSORB EXTEND Registry	512	41.0	12	4.3	1.8 (ID)	0.8 (d/p)
Liang et al. Registry	35	75.0	2	0	0	0
GHOST EU Multicentre registry	1189	51.2	6	10.1 (TLF)	2.5	2.1 (d/p)
AMC registry et al. Registry	135	67.0	6	8.5	6.3	3 (d)
Elabbassi et al. Registry	140	62.0	12	7.2	2.9 (ID)	
L'Allier P et al. Registry	339	41.0	In-hospital	2	0	1.2 (d)
ASSURE Registry	183	64.6	12	5	2.8	0
ABSORB FIRST ²⁴ Registry	1200	46.7	1	0.8	N/A	0.42 (d/p)

IVUS use in GHOST-EU

Lesion-based					
Pre-Dilatation	1,405/1,440 (98%)				
Post-Dilatation	712/1,1440 (49%)				
Patient-based					
No. Target Lesion/Pt	1.2±0.5				
Multivessel Disease	485/1,186 (40.9%)				
SYNTAX Score	11.3±7.9 (820)				
Hybrid (BVS plus non-BVS)	219/1,189 (18.4%)				
IVUS-guided	171/1,184 (14.4%)				
OCT-guided	163/1,184 (13.8%)				
Tot. Scaffold Length (mm)	32.6±23.0 (1,189)				
Aver. Scaffold Diameter (mm)	3.0±0.5 (1,189)				
Tot. Scaffold Implanted (n)	1731				

GHOST-EU

****** Device-Oriented composite primary endpoint

GHOST-EU

GHOST-EU Scaffold thrombosis

Stent optimization should be considered

GHOST-EU

GHOST-EU IVUS sub-analysis

IVUS Guidance

- Plaque composition and severity of the calcification
- Select proper stent size and lenght according to vessel size and lesion length
- After stent implantation to evaluate stent expansion

IVUS case

Which size of BRS?

0.20

0.00

3.0mm BRS \rightarrow post dilatation

40 0 mmittig EMO GVM CKOTO COLUMBLESH

IVUS case

Pre

non-calcified lesion

Post NC 3.0 18atm

 $MSA = 3.32 \text{ mm}^2$

Post NC 3.0 23atm

OCT Guidance

After Stenting •Stent expansion, malapposition •Scaffold disruption •Edge dissections and full lesion coverage

> Follow Up •Neointimal coverage

OCT case

Optical coherence tomography images obtained from LCx pull-back. Double-strut layer in left main trunk was shown (white arrows).

proximal

Pull back from LAD

distal

*

*

SA: 5.39 mm² (2.87*2.36) LA: 0.59 mm² (0.97*0.81)

NSD-

OCT case Follow-up OCT images

proximal

Mon

Pull back

distal

✻

SA: 6.84 mm² (3.51*2.43) LA: 1.82 mm² (1.76*1.23)

NSD

*

OCT can detect the mechanism of restenosis neointimal hyperplasia... strut disruption... uncovered struts...

Calcium (*) Strut disruption (**)** <u>Non-uniform strut distribution</u>

(NSD)

CHRONIC TOTAL OCCLUSION

Diffusely diseased LAD with CTO ()
Severe stenosis in the diagonal ()

 All lesions were treated with 3 BVS + small EES + DEB

CHRONIC TOTAL OCCLUSION 18M follow- up OCT images

Favorable neointimal coverage is apparent. Black boxes: scaffolds (and/or tissue matrix) remain visible.

Conclusions

- Preliminary experience with BVS in real world is extremely promising with encouraging mid term clinical outcomes.
- Adequate lesion preparation, appropriate imaging guidance (IVUS and if possible OCT) and if necessary postdilatation are mandatory in BVS implantation in complex lesions
- Awaiting for longer term follow up data and new gen BVS $100 \mu m$

