

Drug-Coated Balloons in Complex Cases

Prof. Peter Barlis

MBBS MPH PhD FESC FCSANZ FACC FRSA FRACP Interventional Cardiologist & Professor of Medicine Melbourne Medical School The University of Melbourne Victoria, Australia

Why drug-coated balloons?

- 1. Ease of use in coronaries and peripheral (especially below knees)
- Cost balloon catheters have traditionally been less expensive than stents (and potential cost saving with less duration of DAPT)
- 3. Potential for improved safety no chronic polymer effects, reduced drug exposure
- Can be used in situations where DES can be problematic e.g. ISR, bifurcations (ostium side branch), diabetics, small vessels, diffuse disease, cant deliver stent

DCB: Components

Pantera balloon

- Semi-compliant
- Low profile

Platform

Drug

Excipient

Highly deliverable

Paclitaxel

- 3.0 μg/mm²
- Anti-proliferative
- Lipophilic & quickly absorbed

BTHC

- Butyryl-tri-hexyl citrate
- Biocompatible
- Degrades to citric acid and alcohol

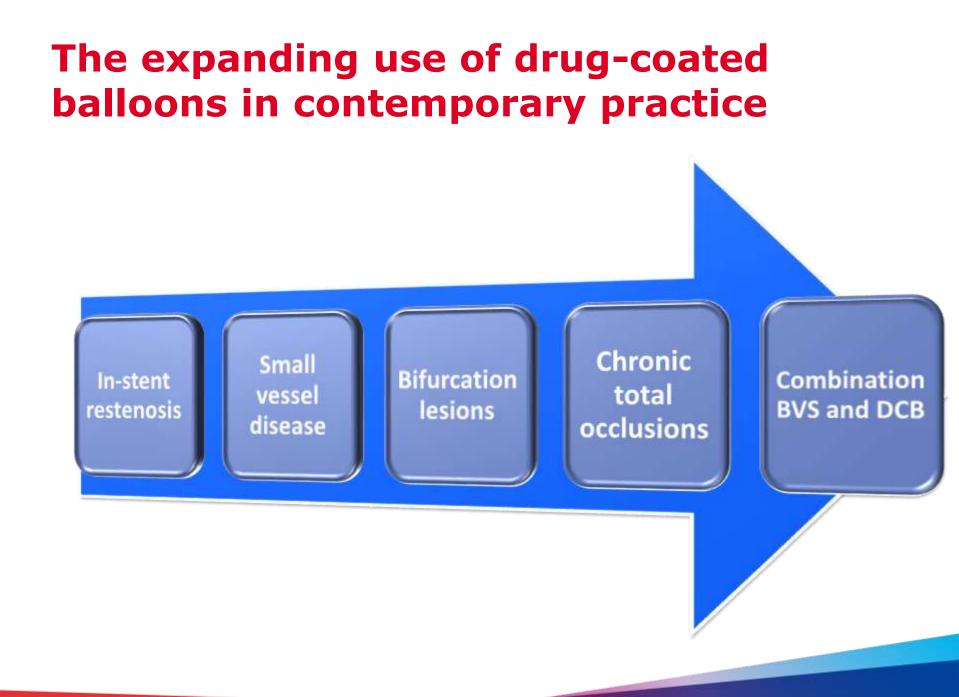
Lux coating

- Homogenous
- Keeps paclitaxel in microcrystalline structure
- Optimal bioavailability

Pantera Lux

Clinically proven^{1,2}

PEPPER and DELUX studies show high efficacy and safety in in-stent restenotic and de novo lesions


Indicated³ for

- in-stent restenosis
- de novo lesions
- small vessels
- acute occlusions

¹ Hehrlein C et al. Cardiovasc Revasc Med. 2012 Sep; 13(5): 260-4.

² Toelg R et al. EuroIntervention. 2014 Sep; 10(5): 591-9.

³ Indications may differ in countries not accepting CE mark. Not for sale in the U.S.

In-stent restenosis

- Compared to the BMS era, the rate of in-stent restenosis (ISR) has been reduced by the introduction of DES
- With DES however, the rate of ISR is still about 5-10%, but higher in diabetics, small vessels, and bifurcations
- The first-line challenge is to reduce the frequency of ISR by using modern DES with proper implantation techniques
- When ISR does occur however, DCB's offer a proven therapeutic alternative to implantation of additional stents

ESC guidelines recommend DCB for ISR treatment

Recommendations for repeat revascularizations	Class	Level
Drug-coated balloons are recommended for the treatment of in- stent restenosis (within BMS or DES).	I	Α

This is the strongest recommendation and highest level of evidence possible.

[Class 1 = general agreement that treatment is beneficial, useful and effective] [Level of evidence A = derived from multiple randomized clinical trials or meta-analysis]

Source: Windecker et al. Eur Heart J. 2014 Oct 1; 35 (37): 2541-619.

A Target Lesion Revascularization

B Myocardial Infarction

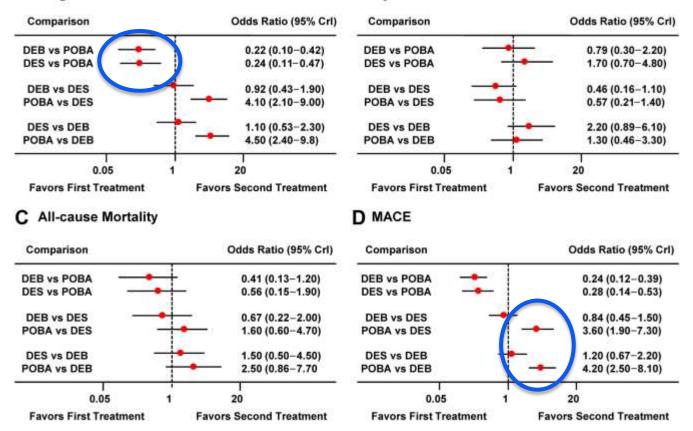


Figure 2 Results of Bayesian Network Meta-Analysis for Overall Rates of Clinical Outcomes in a Random Effects Model Results of a Bayesian network meta-analysis with a random-effects model for the risk of target lesion revascularization (A), myocardial i...

Comparison Among Drug-Eluting Balloon, Drug-Eluting Stent, and Plain Balloon Angioplasty for the Treatment of In-Stent Restenosis : A Network Meta-Analysis of 11 Randomized, Controlled Trials

Joo Myung Lee, Jonghanne Park, Jeehoon Kang, Ki-Hyun Jeon, Ji-hyun Jung, Sang Eun Lee, Jung-Kyu Han, Hack-...

JACC: Cardiovascular Interventions, Volume 8, Issue 3, 2015, 382 - 394

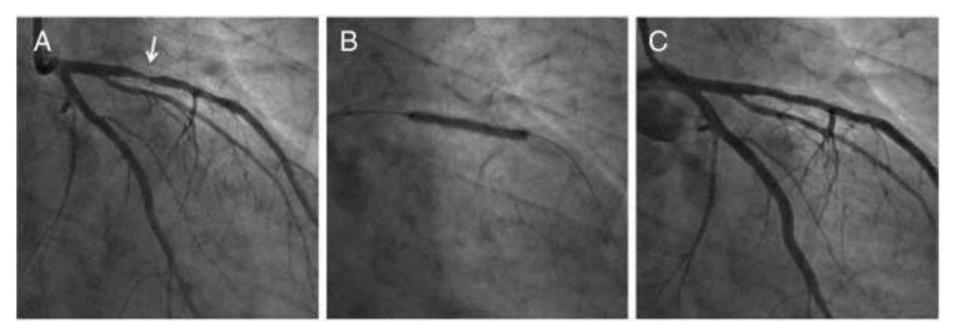


Fig. 1. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon.(A) Coronary angiography showing in-stent (baremetal stent) restenosis at the proximal left anterior descending artery.(B) Drug-coating balloon after balloon angioplasty.(C) Fi... Kihei Yoneyama, Kohei Koyama, Yasuhiro Tanabe, Takanobu Mitarai, Ryo Kamijima, Shingo Kuwata, Hiroshi Yamazaki, Emi Nakano, Ken Kongoji, Tomoo Harada, Yoshihiro J. Akashi

Coronary angioscopy and optical coherence tomography for confirmation of drug-coated neointimal plaque after paclitaxel-coated balloon angioplasty for in-stent restenosis

International Journal of Cardiology, Volume 176, Issue 3, 2014, 1207–1209

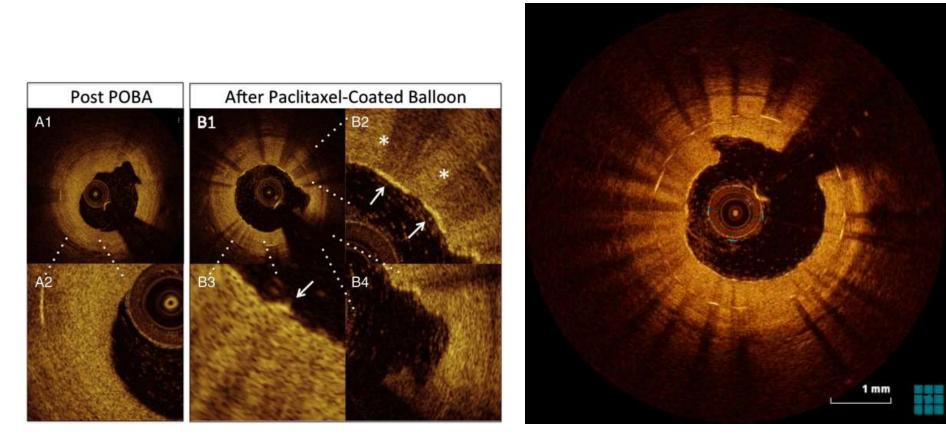


Fig. 2. Optical coherence tomography images of coronary in-stent restenosis with a paclitaxel-coated balloon.(A1) After balloon angioplasty, OCT revealed a severe neointimal plaque within the bare-metal stent.(A2) Neointimal coverage with a large view.(B1) <u>Kipei</u> Yoneyama, Kohei Koyama, Yasuhiro Tanabe, Takanobu Mitarai, Ryo Kamijima, Shingo Kuwata, Hiroshi Yamazaki, Emi Nakano, Ken Kongoji, Tomoo Harada, Yoshihiro J. Akashi

Coronary angioscopy and optical coherence tomography for confirmation of drug-coated neointimal plaque after paclitaxel-coated balloon angioplasty for in-stent restenosis

International Journal of Cardiology, Volume 176, Issue 3, 2014, 1207–1209

Fig. 3. Angioscopy of coronary in-stent restenosis with a paclitaxel-coated balloon.(A) Invisible stent struts with full neointimal coverage with white plaque.(B) Appearance of hemorrhage in neointimal plaque after plain old balloon angioplasty (POBA).(C) Conf...

Kihei Yoneyama, Kohei Koyama, Yasuhiro Tanabe, Takanobu Mitarai, Ryo Kamijima, Shingo Kuwata, Hiroshi Yamazaki, Emi Nakano, Ken Kongoji, Tomoo Harada, Yoshihiro J. Akashi

Coronary angioscopy and optical coherence tomography for confirmation of drug-coated neointimal plaque after paclitaxel-coated balloon angioplasty for in-stent restenosis

International Journal of Cardiology, Volume 176, Issue 3, 2014, 1207–1209

http://dx.doi.org/10.1016/j.ijcard.2014.07.224

Case illustration

- 51 year-old male
- Hypertension, dyslipidaemia, prior smoker
- 2011: inferior STEMI treated with 3 bare metal stents to the RCA
- 2015: New onset chest pain, positive inferior ischemia on stress echocardiography

Inferior STEMI 2011

hhhhhhhhh

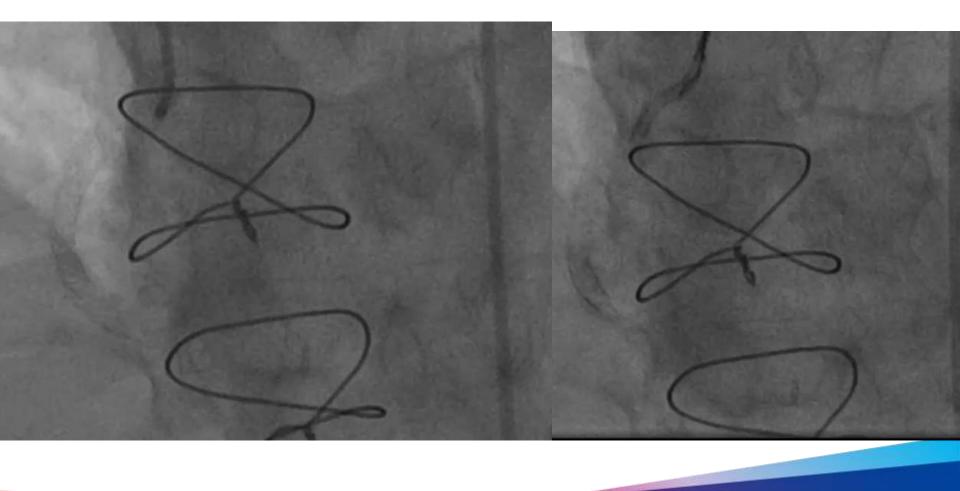
Post 3 bare metal stents 4.0x35mm 4.0x22mm 4.0x30mm

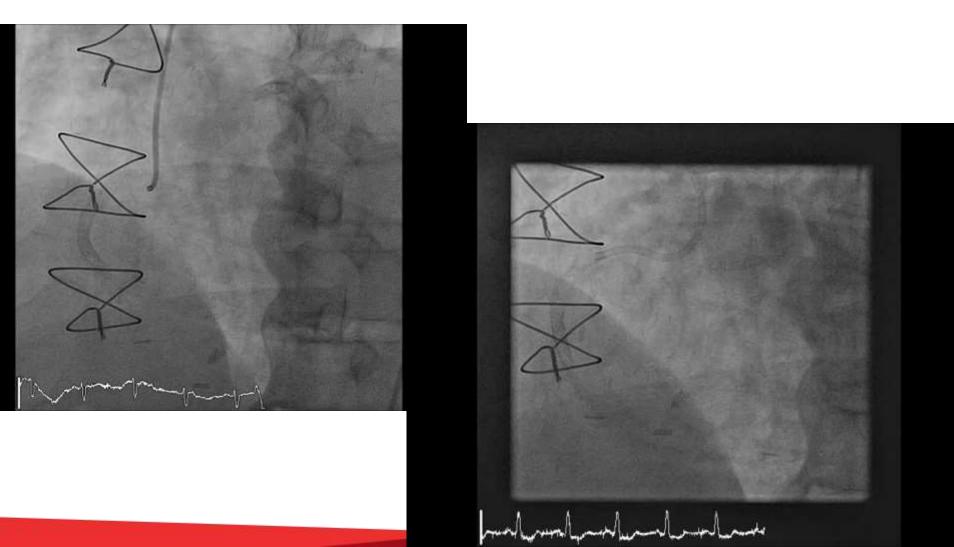
2015: recurrent angina

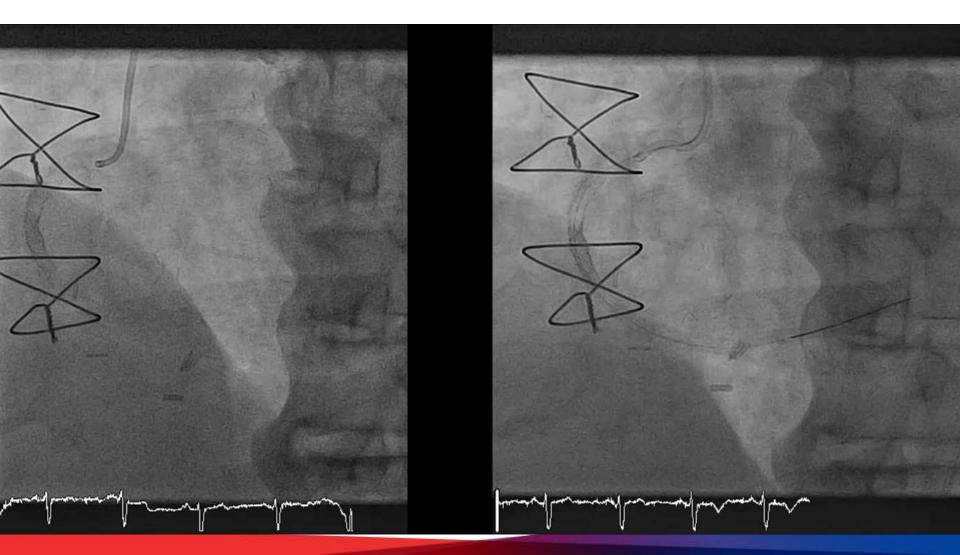
Procedure: 3.5mm NC balloon BIOTRONIK Pantera Lux DEBs 3.5x15mm 4.0x25mm 4.0x20mm

Case illustration 2

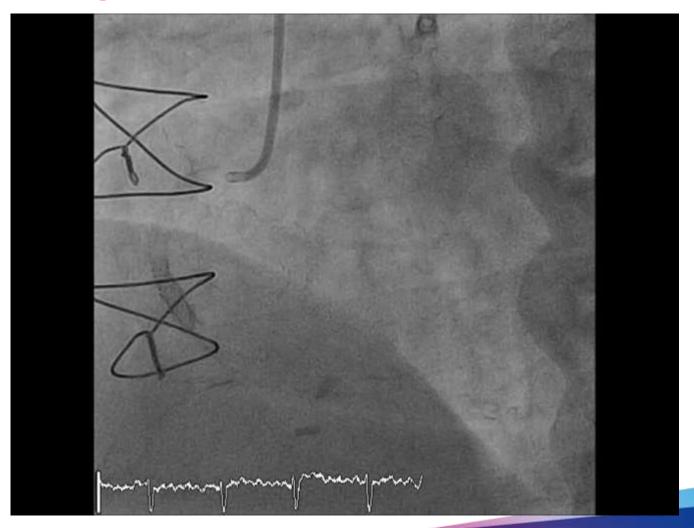
- 73-year-old male
- Hypertension, dyslipidemia, type 2 diabetes, obstructive sleep apnoea, chronic obstructive airways disease
- NSTEMI 2009 triple vessel heavily calcified coronary disease
- CABG 2009 LIMA to LAD, radial to OM, SVG-PDA


2009: NSTEMI, underwent CABGx3 (LIMA to LAD, RA-OM, SVG-PDA)

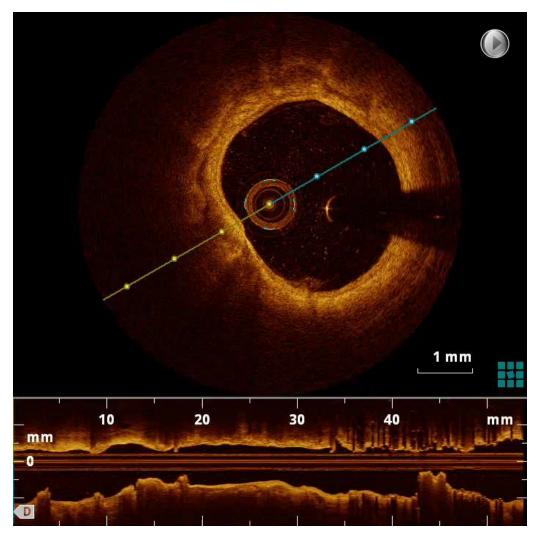

2011: Recurrent angina, NSTEMI SVG graft occluded PCI – RCA complex procedure, eventually two stents implanted 3.0x12, 3.5x24 Resolute stents


2012: 6 months post PCI, develops recurrent chest pain. Severe ISR – Xience 3.0x16mm stent deployed to ISR

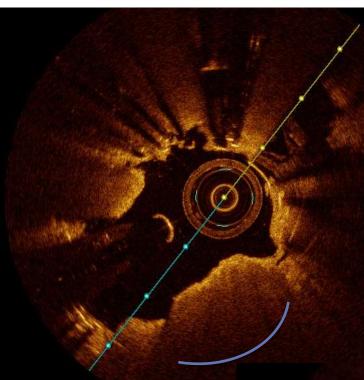
2013: 14 month later, develops recurrent chest pain, objective inferior ischemia on thallium Further 3.5x12mm Xience Prime stent deployed

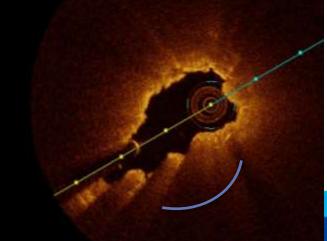


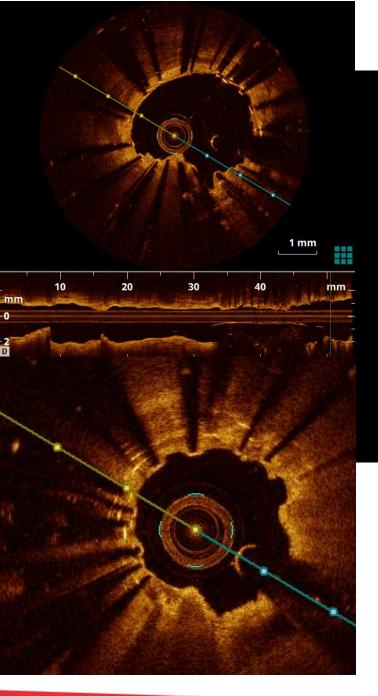
Sep 2014: Angina, 90% RCA restenosis Promus Element deployed 3.5x12mm



2015


Having angiography to evaluate recurrent angina and positive stress echo




OCT Imaging - baseline

OCT – baseline – stent fracture

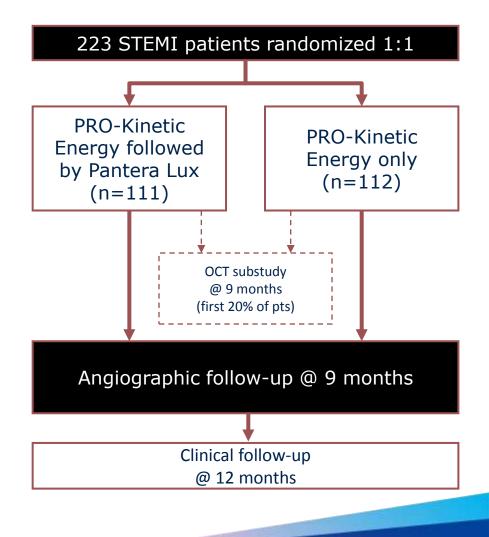
Post DCB

67year old, STEMI 12 months prior, LAD occlusion stented with DES, with recurrent angina

What about DCB for Acute STEMI

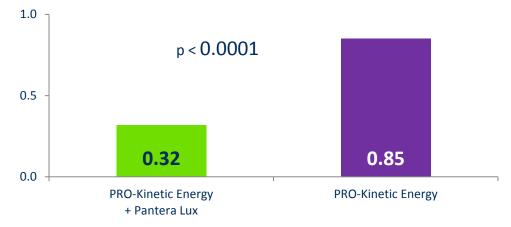
PEBSI: A Randomized Trial of Paclitaxel-Eluting Balloon After Bare Metal Stent Implantation vs Bare Metal Stent in ST Elevation Myocardial Infarction PEBSI

DESIGN


Prospective, multi-center, randomized, clinical trial

OBJECTIVE

To compare the efficacy and safety of the combined treatment of BMS plus DCB vs the conventional treatment (BMS only) in patients with STEMI within 12 hours of symptoms onset


PRINCIPAL INVESTIGATORS

Arturo Garcia-Touchard Javier Goicolea Hospital Universitario Puerta de Hierro Madrid, Spain

Primary endpoint result

9-month LLL [mm]

	BMS + DCB N = 111	BMS N = 112	р
9-month angiographic follow-up	N = 88	N = 83	
Primary endpoint: Late Lumen Loss (LLL)	0.32 ± 0.49 mm	0.85 ± 0.67 mm	<0.0001
Minimal lumen diameter	2.48 ± 0.57 mm	1.79 ± 0.71 mm	<0.0001
Binary restenosis	2.2 %	29.8 %	<0.0001

Secondary clinical endpoint results

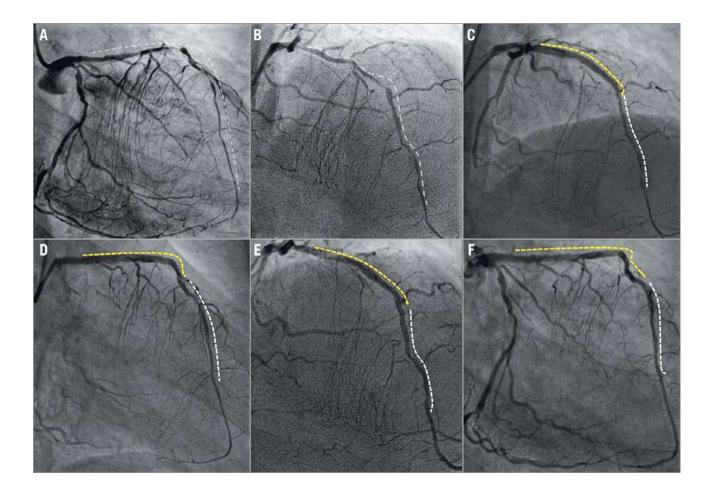
	BMS + DCB N = 111	BMS N = 112	р
12-month clinical follow-up	N = 105	N = 107	
TLR	1.8 %	7.1 %	0.0558
TVR	1.8 %	8.9 %	0.0192
Reinfarction	1.8 %	1.8 %	1.0000
Cardiac death	0.9 %	1.8 %	1.0000
Stent thrombosis	0.9 %	0.0 %	0.4955
Target Vessel Failure	3.6 %	11.6 %	0.0256

- Cardiac death and reinfarction at the end of 1 year were low, and similar in both groups
- MACE, TVF, and TVR were significantly lower in the BMS + DCB group
- There was a trend to a lower TLR in the BMS + DCB group
- ST, stroke, major bleeding requiring transfusion were also low, and similar in both groups

Secondary OCT endpoint results

	BMS + DCB N = 111	BMS N = 112	р
9-month OCT follow-up	N = 25	N = 19	
Mean lumen area (mm ²)	7.43 ± 2.36	5.33 ± 1.93	0.0031
Neointimal thickness (mm)	0.14 ± 0.12	0.30 ± 0.16	0.0004
Strut coverage (%)	99.52±1.11	$100 \pm 0.0\%$	0.03

BMS + DCB showed better efficacy by OCT with:


- Greater lumen area
- Less neointimal thickness

Strut coverage excellent in both groups but greater in the BMS group.

A future of 'no more metal jackets'?

Table 1. Baseline demographic and clinical characteristics.

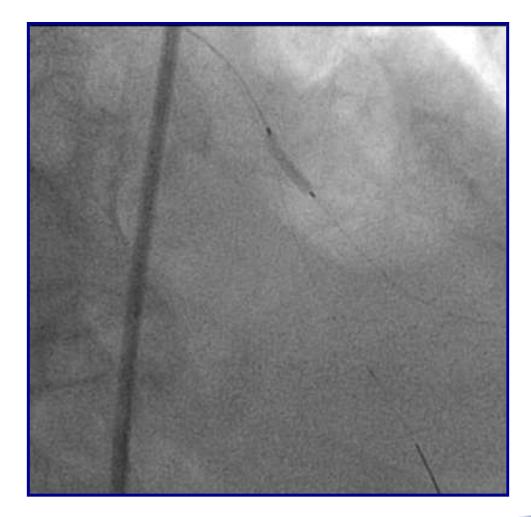
Patients, n (%)	n=42
Age (years), mean±SD	62.0±1.0
LVEF (%), mean±SD	55.0±6.1
Male gender	37 (88.1)
Cardiovascular risk factors	
Family history of CAD	18 (42.9)
Hypertension	29 (69.0)
Hypercholesterolaemia	25 (59.5)
Current smoker	7 (16.7)
Diabetes mellitus	12 (28.6)
Insulin-dependent diabetes	4 (33.3)
Prior MI	10 (23.8)
Prior PCI	17 (40.5)
Prior CABG	2 (4.8)
Stable angina	26 (61.9)
Acute coronary syndrome	16 (38.1)
Multivessel CAD	19 (45.2)
Values are expressed as mean±standard deviation (SD) or number and percentages. CABG: coronary artery bypass graft; CAD: coronary artery disease; LVEF: left ventricular ejection fraction; MI: myocardial infarction; PCI: percutaneous coronary intervention	

Table 2. Lesion and procedural	characteristics.
--------------------------------	------------------

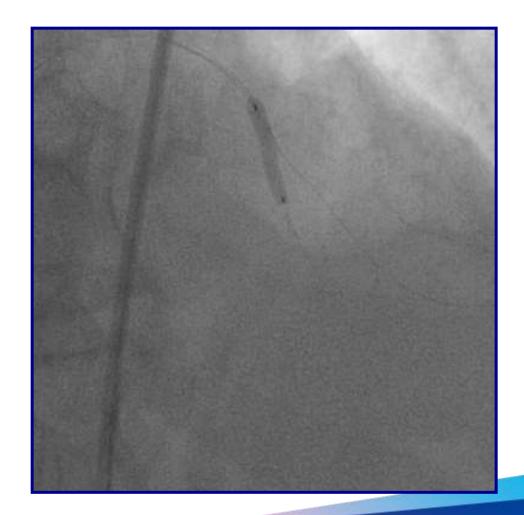

	Patients, n=42
Target vessel	
Left anterior descending	29 (69.0)
Left circumflex	8 (19.0)
Right coronary artery	5 (12.0)
Radial approach	17 (40.5)
Hybrid (BRS plus DCB) indication	
De novo diffuse or tandem coronary disease	37 (88.1)
СТО	2 (5.4)
Bifurcation (side branch >2.0 ≤2.75 mm)	9 (24.3)
Diffuse BMS ISR	5 (11.9)
Rotational atherectomy	1 (2.4)
Scoring balloons	5 (11.9)
Intracoronary imaging	
OCT	5 (11.9)
IVUS	18 (42.9)
BMS: bare metal stent; BRS: bioresorbable scaffold; CTO: chronic total occlusion; DCB: drug-coated balloon; ISR: in-stent restenosis; IVUS: intravascular ultrasound; OCT: optical coherence tomography; PCI: percutaneous coronary intervention	

Table 4. Clinical outcomes following BRS plus DCB hybrid strategy.

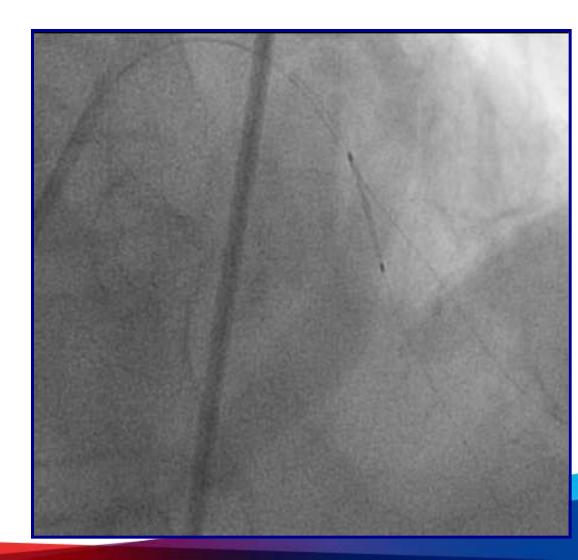
	Patients, n=42	
Procedural success, n (%)	42 (100)	
Periprocedural MI (CK MB >5 times the upper limit of normal), n (%)	2 (4.7)	
Median follow-up period, months	12 (IQR 6-18)	
Angiographic follow-up, n (%)	22 (52.4)	
Events from hospital discharge to the longest available follow-up		
All-cause death, n (%)	0	
TLR per patient, n (%)	5 (11.9)	
ID-TLR per patient, n (%)	2 (4.7)	
BRS segment TLR, n (%)	4 (9.5)	
BRS segment ID-TLR, n (%)	2 (4.7)	
DCB segment TLR, n (%)	1 (2.3)	
Definite/probable BRS/DCB segment thrombosis, n (%)	0	
BRS: bioresorbable scaffold; CK MB: creatine kinase MB; DCB: drug-coated balloon; ID: ischaemia-driven; MI: myocardial infarction; TLR: target lesion revascularisation		

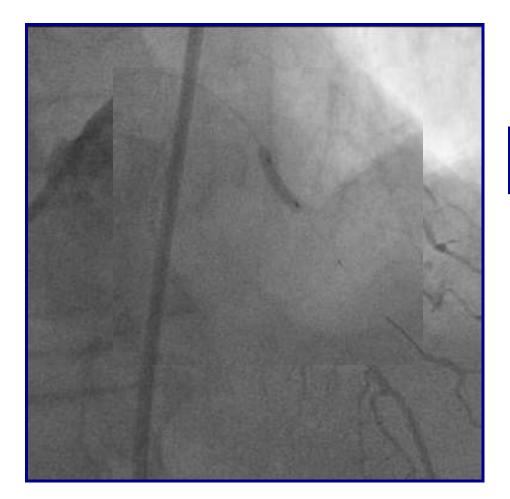

DCB for Bifurcation lesions

Bifurcation stenosis LAD/D2



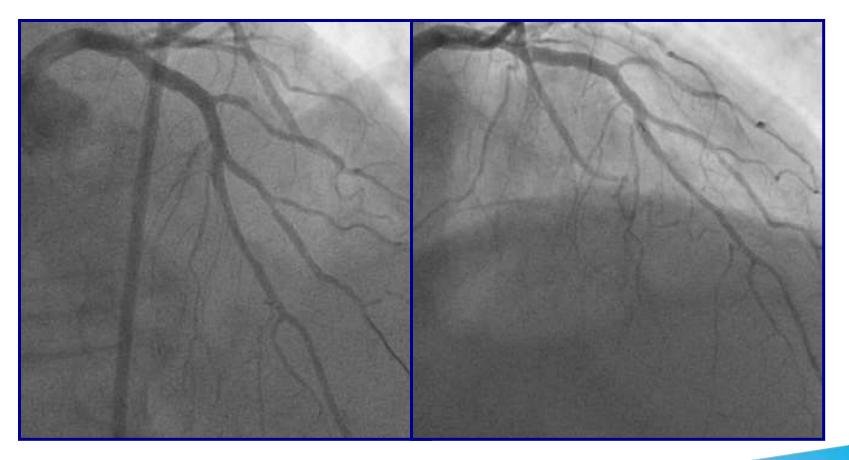
Courtesy Zhaoping Liu, Peking University First Hospital


1. DCB Dilation of SB


2. Dilatation of **MB** with second, usually larger DEB

3. Implantation of open-cell design **BMS** (Coroflex)

4. Dilatation of SB ostium with an uncoated balloon



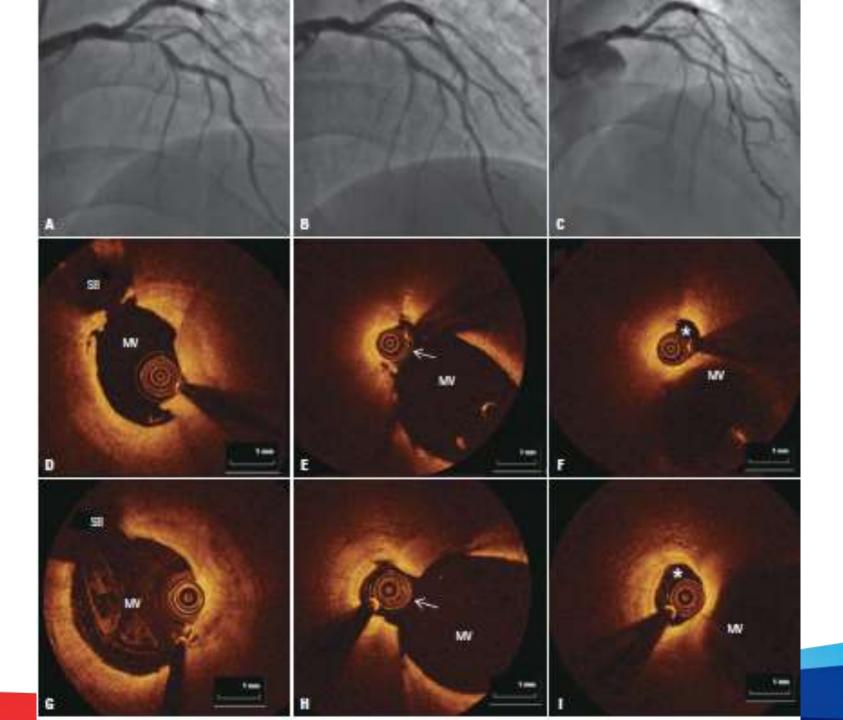
Stenosis at side branch ostium

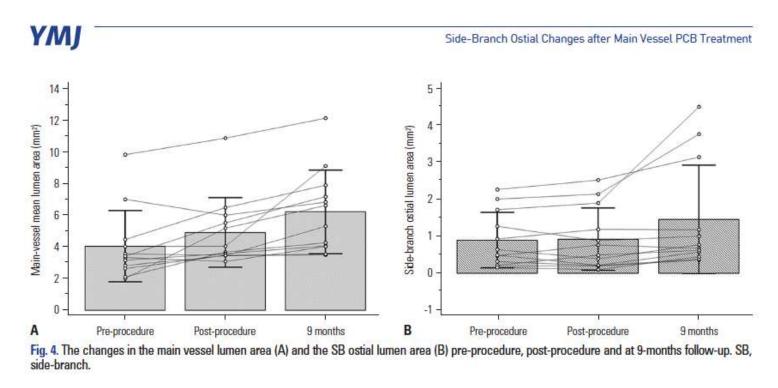
9 months FU

Acute Result

After 9 month

Original Article


Yonsei Med J 2016 May;57(3):606-613 http://dx.doi.org/10.3349/ymj.2016.57.3.606



Serial Morphological Changes of Side-Branch Ostium after Paclitaxel-Coated Balloon Treatment of *De Novo* Coronary Lesions of Main Vessels

Ae-Young Her¹, Soe Hee Ann², Gillian Balbir Singh², Yong Hoon Kim¹, Takayuki Okamura³, Scot Garg⁴, Bon-Kwon Koo⁵, and Eun-Seok Shin²

¹Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea; ²Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea; ³Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan; ⁴East Lancashire Hospitals NHS Trust, Blackburn, Lancashire, UK; ⁵Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.

The lumen area of the proximal rim of the SB ostium in main vessel increased at 9-months follow-up (3.74±2.64 mm2 pre-procedure, 5.03±1.95 mm2 post-procedure and 6.14±2.21 mm2 at 9-months). The lumen area of distal rim of the SB ostium in main vessel also increased at 9-months follow-up (4.35±2.11 mm2 pre-procedure, 4.71±1.92 mm2 post-procedure and 5.88± 2.10 mm2 at 9-months). The SB ostial lumen area increased at 9-months follow-up (0.92±0.68 mm2 pre-procedure, 1.03±0.77 mm2 post-procedure and 1.42±1.18 mm2 at 9-months).

Table 4. Complex coronary lesions.

Devices	Number of patients	Primary outcome/follow-up	TLR, %/follow-up	Bail-out stent rate, %	Reference
DCB+BMS	12	LLL 0.48 mm/6 mos	16/6 mos	-	34
SeQuent Please+BMS vs. TAXUS	84	LLL 0.51 mm vs. 0.53 mm/6 mos	7.7 vs. 8.3/9 mos	-	35
DIOR II+BMS (vs. DES vs. BMS)		MACE 13.2% (vs. 18.6% vs. 32.3%) /12 mos	6.6/12 mos	-	36
	· · · · ·				
BMS+SeQuent Please (vs. TAXUS)	48	LLL 0.64 mm (vs. 0.43 mm)/6 mos	14.6 (vs. 14.6)/12 mos	-	37
on					
SeQuent Please+BMS	30	TLR 17%/12 mos	17/12 mos	-	38
DIOR II+BMS vs. BMS vs. TAXUS	149	LLL 0.64 mm vs. 0.74 mm vs. 0.21 mm/6 mos	20 vs. 17.6 vs. 2%/6 mos	-	39
DIOR I (MB+SB) followed by BMS MB	20	No MACE/4 mos	0/4 mos		41
DIOR I (MB+SB) followed by BMS MB vs. BMS MB vs. DES MB	117	MB: LLL 0.41 mm vs. 0.49 mm vs. 0.19 mm SB: LLL 0.19 mm vs. 0.21 mm vs. -0.11 mm/6 mos	20 vs. 27 vs. 15/18 mos	7.5 (SB)	42
SeQuent Please (MB+SB) followed by BMS MB	28	MB: LLL 0.38 mm SB: LLL 0.21 mm/9 mos	3.8/9 mos	14	43
BMS MB followed by kissing DCB (SeQuent Please, IN.PACT Falcon, DIOR II, Pantera Lux)	12	Procedural success 100% No MACE/8 mos			44
	DCB+BMS SeQuent Please+BMS vs. TAXUS DIOR II+BMS (vs. DES vs. BMS) BMS+SeQuent Please (vs. TAXUS) DIOR II+BMS vs. DES vs. TAXUS) DIOR II+BMS vs. BMS vs. TAXUS DIOR II+BMS vs. BMS vs. TAXUS DIOR I (MB+SB) followed by BMS MB DIOR I (MB+SB) followed by BMS MB vs. BMS MB vs. DES MB SeQuent Please (MB+SB) followed by BMS MB	Devicesof patientsDCB+BMS12DCB+BMS12SeQuent Please+BMS vs. TAXUS84DIOR II+BMS (vs. DES vs. BMS)84BMS+SeQuent Please (vs. TAXUS)48ON90SeQuent Please+BMS30DIOR II+BMS vs. BMS vs. TAXUS149DIOR II+BMS vs. BMS vs. TAXUS149DIOR I (MB+SB) followed by BMS MB20DIOR I (MB+SB) followed by BMS MB vs.117BMS MB vs. DES MB28BMS MB followed by kissing DCB (SeQuent12	Devicesof patientsPrimary outcome/follow-upDCB+BMS12LLL 0.48 mm/6 mosDCB+BMS12LLL 0.48 mm/6 mosSeQuent Please+BMS vs. TAXUS84LLL 0.51 mm vs. 0.53 mm/6 mosDIOR II+BMS (vs. DES vs. BMS)MACE 13.2% (vs. 18.6% vs. 32.3%) /12 mosBMS+SeQuent Please (vs. TAXUS)48LLL 0.64 mm (vs. 0.43 mm)/6 mosONSeQuent Please (vs. TAXUS)48LLL 0.64 mm (vs. 0.43 mm)/6 mosDIOR IJENS NS. BMS vs. TAXUS30TLR 17%/12 mosDIOR I (MB+SB) followed by BMS MB20No MACE/4 mosDIOR I (MB+SB) followed by BMS MB vs. BMS MB vs. DES MB20No MACE/4 mosDIOR I (MB+SB) followed by BMS MB vs. BMS MB vs. DES MB21No MACE/4 mosSeQuent Please (MB+SB) followed by BMS MB28MB: LLL 0.19 mm vs. 0.21 mm vs. 0.11 mm/6 mosSeQuent Please (MB+SB) followed by BMS MB28MB: LLL 0.38 mm SB: LLL 0.21 mm/9 mosBMS MB followed by kissing DCB (SeQuent12Procedural success 100%	Devicesof patientsPrimary outcome/follow-upTLR, %/follow-upDCB+BMS12LLL 0.48 mm/6 mos16/6 mosDCB+BMS12LLL 0.48 mm/6 mos16/6 mosSeQuent Please+BMS vs. TAXUS84LLL 0.51 mm vs. 0.53 mm/6 mos7.7 vs. 8.3/9 mosDIOR II+BMS (vs. DES vs. BMS)MACE 13.2% (vs. 18.6% vs. 32.3%) /12 mos6.6/12 mosBMS+SeQuent Please (vs. TAXUS)48LLL 0.64 mm (vs. 0.43 mm)/6 mos14.6 (vs. 14.6)/12 mosSeQuent Please+BMS30TLR 17%/12 mos17/12 mosDIOR II+BMS vs. BMS vs. TAXUS149LLL 0.64 mm vs. 0.74 mm vs. 0.21 mm/6 mos20 vs. 17.6 vs. 2%/6 mosDIOR I (MB+SB) followed by BMS MB20No MACE/4 mos0/4 mosDIOR I (MB+SB) followed by BMS MB vs. BMS MB vs. DES MB117MB: LLL 0.41 mm vs. 0.49 mm vs. 0.11 mm/6 mos20 vs. 27 vs. 15/18 mosSeQuent Please (MB+SB) followed by BMS MB28MB: LLL 0.38 mm SB: LLL 0.21 mm/9 mos3.8/9 mosBMS MB followed by kissing DCB (SeQuent12Procedural success 100%4.9 mov	Devicesof patientsPrimary outcome/follow-upTLR, %/follow-upstent rate, %DCB+BMS12LLL 0.48 mm/6 mos16/6 mos-DCB+BMS12LLL 0.48 mm/6 mos16/6 mos-SeQuent Please+BMS vs. TAXUS84LLL 0.51 mm vs. 0.53 mm/6 mos7.7 vs. 8.3/9 mos-DIOR II+BMS (vs. DES vs. BMS)0MACE 13.2% (vs. 18.6% vs. 32.3%) /12 mos6.6/12 mos-BMS+SeQuent Please (vs. TAXUS)48LLL 0.64 mm (vs. 0.43 mm)/6 mos14.6 (vs. 14.6)/12 mos-DIOR II+BMS vs. BMS vs. TAXUS48LLL 0.64 mm vs. 0.74 mm vs. 0.21 mm/6 mos17/12 mos-DIOR II+BMS vs. BMS vs. TAXUS149LLL 0.64 mm vs. 0.74 mm vs. 0.21 mm/6 mos20 vs. 17.6 vs. 2%/6 mos-DIOR II (MB+SB) followed by BMS MB20No MACE/4 mos0/4 mos-DIOR I (MB+SB) followed by BMS MB vs. BMS MB vs. DES MB117MB: LLL 0.41 mm vs. 0.49 mm vs. 0.19 mm SB: LLL 0.19 mm vs. 0.21 mm/6 mos20 vs. 27 vs. 15/18 mos7.5 (SB) 15/18 mosSeQuent Please (MB+SB) followed by28MB: LLL 0.38 mm SB: LLL 0.21 mm/9 mos SB: LLL 0.21 mm/9 mos SB: LLL 0.21 mm/9 mos3.8/9 mos14BMS MB followed by kissing DCB (SeQuent12Procedural success 100%1414

EuroIntervention 2013;9:979-988

The current status of drug-coated balloons in percutaneous coronary and peripheral interventions

Study Device		Vessel Thrombosis Rate, % (n/N)	Duration of DAPT, Month(s)	Clinical Follow Up, Months	
PEPCAD I	SeQuent Please	0 (0/82) in DCB only 6.3 (2/32) in DCB + BMS	1 3	6	
PICCOLETTO	Dior I	0 (0/18) in DCB only 0 (0/10) in DCB + BMS	1 3	9	
Spanish DIOR registry	Dior I/II	1 (1/103)	Not available	12	
BELLO	In.Pact Falcon	0 (0/94)	Not available	6	
LOCAL TAX	Genie + BMS	0 (0/67)	6	6	
PEPCAD III	Coroflex DEBlue	2 (6/310)	6	9	
PERFECT	SeQuent Please + EPC-capturing stent	0 (0/62)	3	6	
INDICOR	SeQuent Please + BMS	6.1 (3/49) in DCB 1st 3.1 (1/48) in BMS 1st	3	12	
De Novo Pilot study	Moxy + BMS	0 (0/26)	3	6	
PEPCAD IV	SeQuent Please + BMS	0 (0/45)	3	6	
PEPCAD CTO	SeQuent Please + BMS	0 (0/48)	3	6	
DEBAMI	SeQuent Please + BMS	6.7 (2/30) (1 patient at 2 months, 1 patient at 6 months)	3	12	
DEB-AMI	Dior II + BMS	4 (2/50) (1 patient at day 4, 1 patient at day 5)	Not available	6	
Valentines II	Dior II	0 (0/103)	3	7.5	
Pilot Long Lesion study	DCB (+ provisional BMS)	0 (0/12)	Not available	6	
DEBIUT registry	Dior I + BMS	0 (0/20)	3	4	
DEBIUT trial	Dior I + BMS	0 (0/40)	3	12	
PEPCAD V	SeQuent Please + BMS	7 (2/28) (1 patient at 6 months, 1 patient at 8 months)	3	9	
Sgueglia et al.	4 different DCB + BMS	0 (0/12)	3	8	

Loh and Waksman

JACC: CARDIOVASCULAR INTERVENTIONS, VOL. 5, NO. 10, 2012

Take Home Messages

- Drug coated balloons are proving to be a 'multi-talented' tool in the modern cardiac catheterisation laboratory
- Each case of ISR needs to be considered individually as there are several factors to think about including:
 - Patient characteristics (e.g. diabetes, ability to take prolonged DAPT)
 - Lesion/vessel factors (e.g. vessel geometry, calcification, distal versus proximal ISR, small vs large vessel, angulation, tortuosity)
 - Stent factors (e.g. stent type, likely mechanism for ISR such as fracture, versus neointimal proliferation versus malapposition)
- Following on from the positive results in the management of instent restenosis, drug coated balloons are showing promise in other challenging lesions subsets to treat native coronary artery disease with reassuring long term safety profile and, by negating the need for prolonged DAPT, offer a strategic benefit to treating patients with coronary disease in a cost effective way