How to Manage Long SFA Lesions

BMS Outcomes

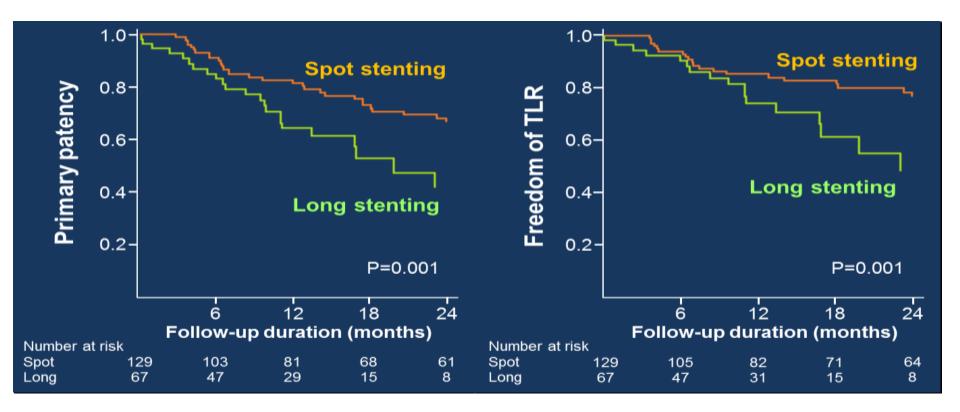
Spot vs Long Stenting after Subintimal Angioplasty

Retrospective analysis: Between 2003 and 2013, a total of 196 limbs in 163 patients with stenting after SA for long CTOs (lesion length ~ 25 cm)

Spot stenting 129 limbs (66%)

- 1) Routine stenting at proximal stump
- 2) Flow-limiting dissection
- 3) Significant RS >30%

Long stenting 67 limbs (34%)


The entire lesion was covered with overlapping stents

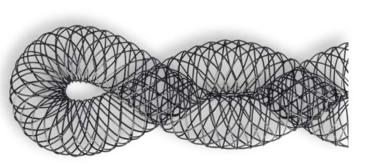
Hong SJ, Ko YG, JACC Intv 2015;8:472

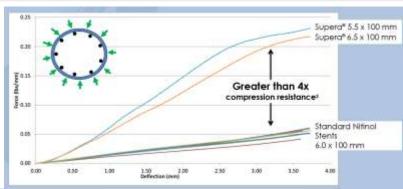
Late Outcomes

Hong SJ, Ko YG, JACC Intv 2015;8:472

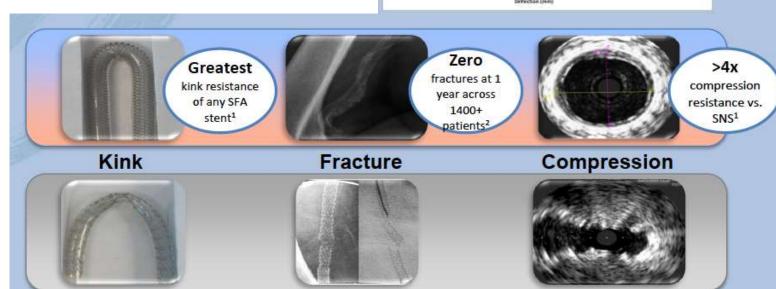
Old Endovascular Treatment Options

- Conventional balloons and BMS
 - => not good enough!

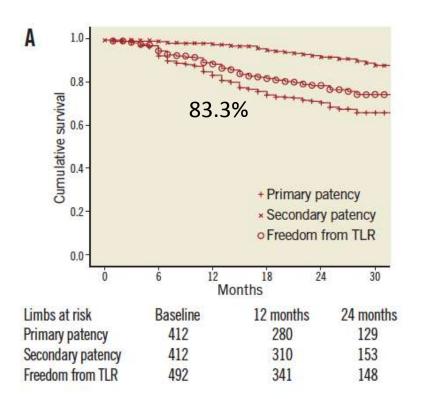


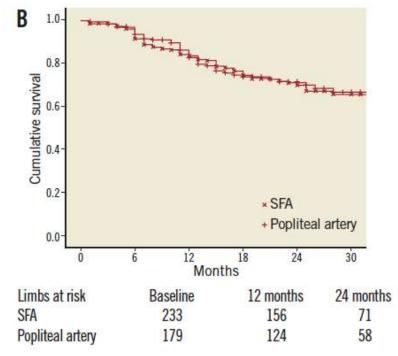

Newer Options for Long SFA Lesions

- Interwoven nitinol stent
- Covered stent
- DEB ± pretreatment with atherectomy
- DES


SUPERA: Interwoven Nitinol Stent

Supera


Standard Nitinol Stents



SUPERA 500: Leipzig Registry

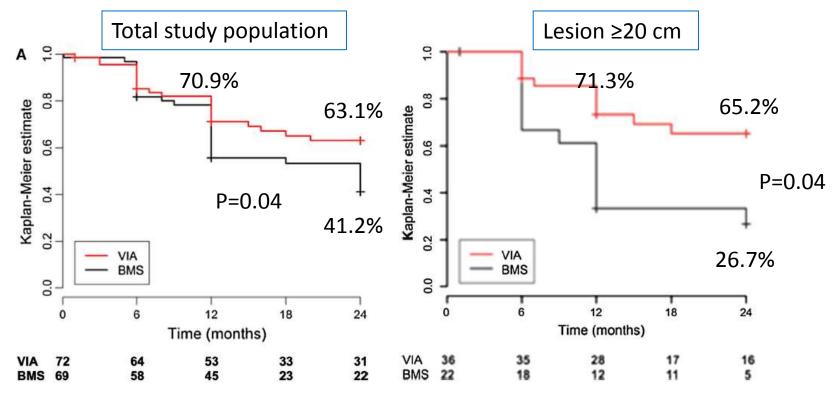
N=470, Mean lesion length 126.4 mm, total occlusion 52.6%

Werner M, EuroIntervention. 2014;10:861

SUPERA stent

- No RCT data
- No large-scale clinical study for lesion length > 20 cm

Table I Summary of studies of SUPERA stents


Study name	Number of patients	SFA, %	Popliteal, %	Claudicant, %	CLI, %	Mean lesion length, mm	Moderate or severe calcification, %	Occluded segment, %	Primary patency at I yr, %	Primary patency at 2 yr, %	Stent fracture at I yr, %
Scheinert (2011)9	107	100	-	82	17	90	54	31	85	76	0
Goltz (2012) ²³	40	0	100	25	75	=	-	88	68	-	0
George (2014)15	80	91	22	68	31	143	-	39	86	-	0
León (2013)24	34	0	100	26	74	119	-	44	79	-	0
Scheinert (2013)21	101	0	100	67	23	58	52	48	88	-	0
Werner (2014)12	439	59	42	82	18	126	52	53	81	62	0
Chan (2014)14	78	100	54	59	47	126		-	79	2	0
Brescia (2015) ²²	48	100	69	54	46	240	-	-	80	83	0
Dumantepe (2015)13	36	-	-	-	-	105	64	33	86	-	0
Garcia (2015)11	264	98	13	95	5	78	73	25	79	-	0

Abbreviations: CLI, critical limb ischemia; yr, year; SFA, superficial femoral artery.

Covered Stent: VIASTAR Trial

Heparin-bonded Viabahn
A RCT (N=141), lesion length 19 cm

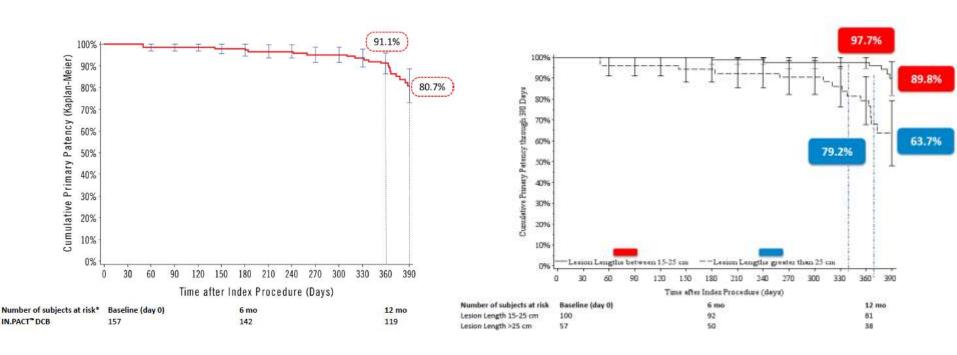
DCB: Advantages

- "Leaving nothing behind"
 - good for "no-stent zones"
 - no stent-related complications
 - Not interferes with future interventions

IN.PACT Global Long Lesion Imaging Cohort

Lesions (N)	164
Lesions (IV)	104
Lesion Type:	
de novo	83.2% (134/161)
restenotic (no ISR)	16.8% (27/161)
ISR	0.0% (0/161)
Lesion Length	26.40 \pm 8.61 cm
Total Occlusions	60.4% (99/164)
Calcification	71.8% (117/163)
Severe	19.6% (32/163)
RVD (mm)	4.594 ± 0.819
Diameter Stenosis (pre-treatment)	90.9% ± 14.2
Dissections: 0	37.9% (61/161)
A-C	47.2% (76/161)
D-F	14.9% (24/161)

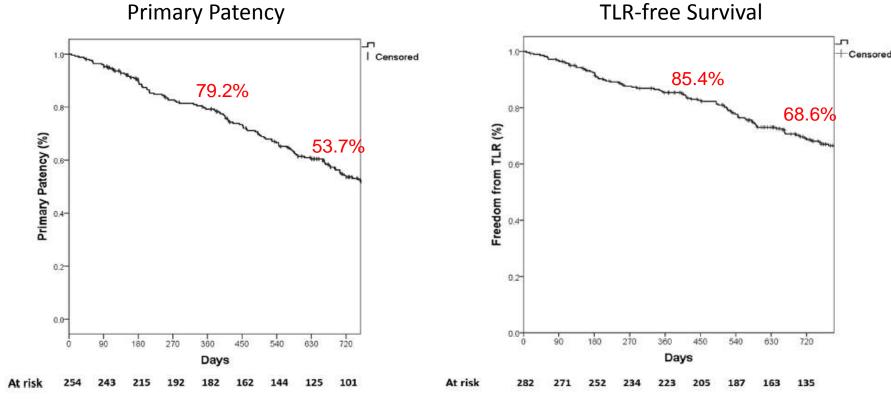
Procedural Characteristics					
Device Success [1]	99.5% (442/444)				
Procedure Success [2]	99.4% (155/156)				
Clinical Success [3]	99.4% (155/156)				
Pre-dilatation	89.8% (141/157)				
Post-dilatation	39.1% (61/156)				
Provisional Stent LL 15-25 cm:	40.4% (63/156) 33.3% (33/99)				
LL > 25 cm:	52.6% (30/57)				


- 1. <u>Device success:</u> successful delivery, inflation, deflation and retrieval of the intact study balloon device without burst below the RBP
- 2. <u>Procedure success</u>: residual stenosis of ≤ 50% (nonstented subjects) or ≤ 30% (stented subjects) by core lab (if core lab was not available then the site reported estimate was used)
- 3. <u>Clinical success:</u> procedural success without procedural complications (death, major target limb amputation, thrombosis of the target lesion, or TVR) prior to discharge

IN.PACT Global Long Lesion Imaging Cohort

Overall primary patency

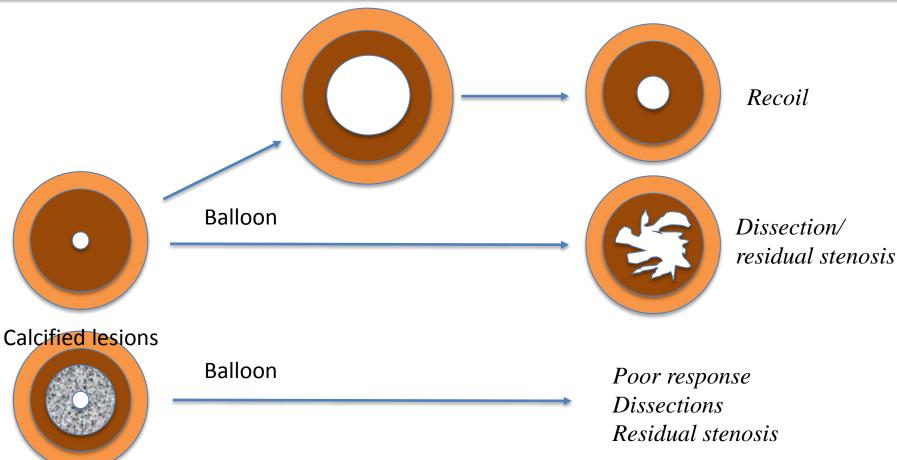
tency Primary patency: long vs. very long



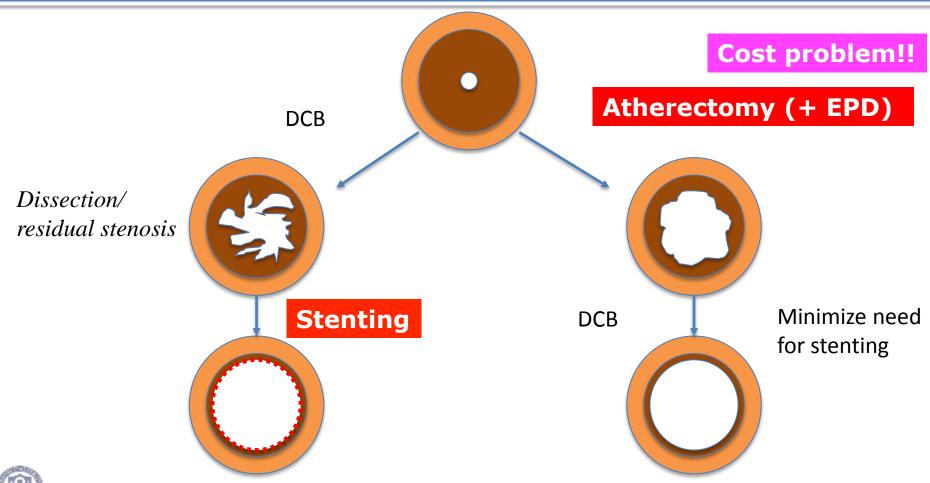
However, Leipzig Data ...

288 limbs (260 patients), Lesion length 24 cm, CTO 65%, ISR 37%, InPACT DCB

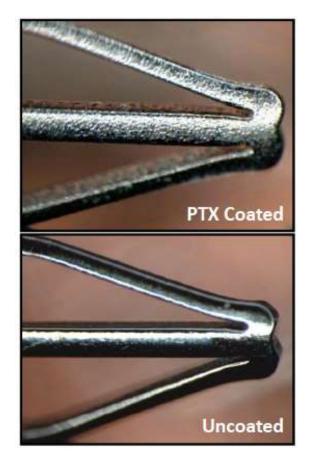
Challenges to DCB



- Long lesions:
 - more plaque burden, higher risk of dissection
- Calcification:
 - difficult to dilate, more residual stenosis, higher risk of dissection, insufficient drug delivery


Limitations of DCB

DCB in Long Lesions May Require ...



Zilver PTX

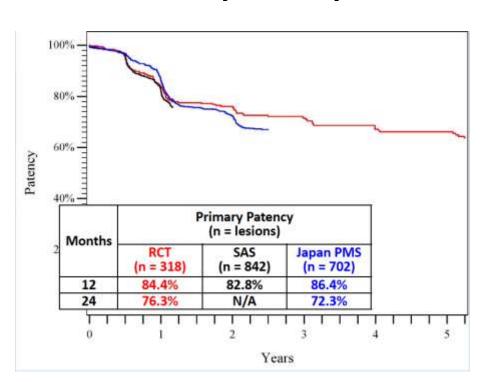
- Stent: Zilver
 - Self-expandable nitinol stent
- Drug: paclitaxel only
 - 3 μg/mm² dose density
- No polymer or binder

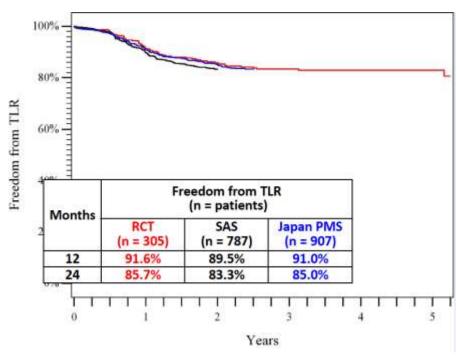
Zilver PTX Trials

Baseline Clinical Characteristics

Procedural Data

	Zilver PTX RCT	Zilver PTX SAS	Zilver PTX Japan PMS
Patients	236	787	907
Age (years)	68 ± 10 *	67 ± 9 *	74 ± 9
Male	66%	73%	70%
Diabetes	50% *	36% *	59%
High cholesterol	76% *	58%	61%
Hypertension	89%	80% *	85%
Pulmonary disease	19% *	9%	8%
Renal Failure (eGFR< 60 and/or "on Dialysis")	0% (10% renal disease*)	Not assessed (11% renal disease*)	36% (44% renal disease)


		Zilver I		Ziver I		Zilver PTX Japan PMS	
Lesions		247	0	900)	1075	
Lesion length (cm)		6.6 ± 3.9 *		10.0 ± 8.2 *		14.7 ± 9.7	
Diameter stend	osis (%)	81 ± 1	7 *	85 ± 1	6 *	92 ± 11	
Total occlusions		33% *		38%		42%	
In-stent resten	In-stent restenosis		0% *		*	19%	
	0	0%		0%		7%	
Patent runoff	1	22%	1	19%		32%	
vessels	2	35%		35%		32%	
	≥3	42%		45%		29%	


Late Outcomes

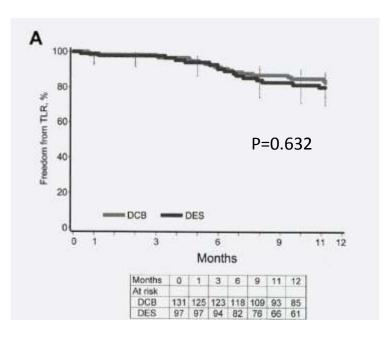
Primary Patency

Freedom from TLR

Stent Integrity

	RCT	SAS	Japan PMs
	(n=247)	(n=900)	(n=1075)
Stent fracture rate at 1 year	0.9%	1.5%	1.5%

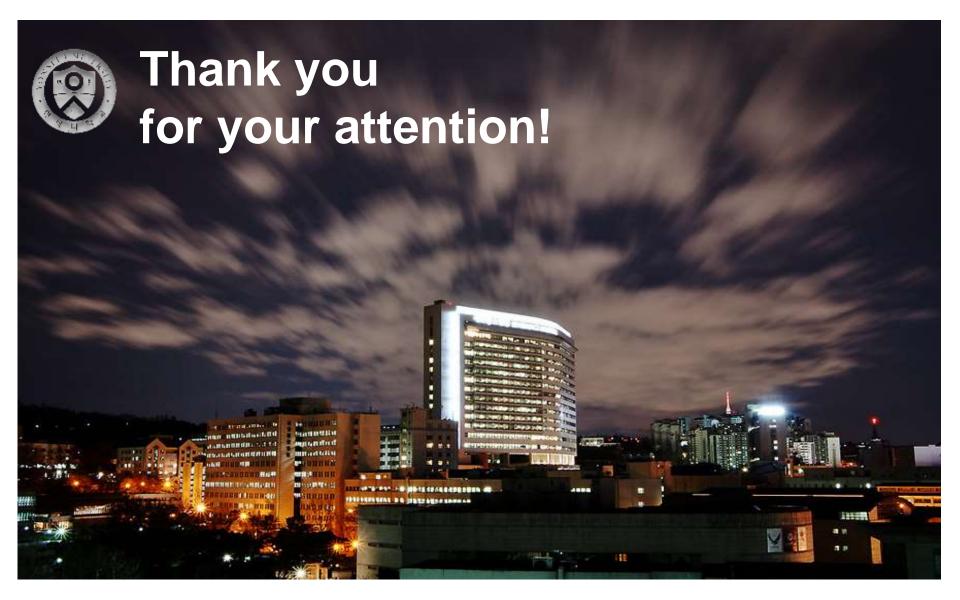
Zilver PTX


- Relatively simple procedures
- High patency rates
- Low stent fracture rates
- No late catch-up phenomenon
- However, little data in very long lesions!

DES vs DCB: Retrospective Data

Baseline Patient Characteristics					
	DCB (n=131)	DES (n=97)	р		
Patient characteristics					
Age, y	68.9±10.5 [69, 45-94]	68.2±8.0 (69, 48-85)	0.586		
Men	77 (58.8%)	62 (63.9%)	0.432		
Diabetes	53 (40.5%)	37 (38.1%)	0.724		
End-stage renal disease	2 (1.5%)	2 (2.1%)	0.76		
Renal insufficiency*	29 (22.1%)	18 (18.6%)	0.509		
Hyperlipidemia	110 (84.0%)	79 (81.4%)	0.616		
Past/current smoker	90 (68.7%)	66 (68.0%)	0.91		
Hypertension	109 (83.2%)	78 (80.4%)	0.58		
Rutherford class	1.00.100.000	1.0.1000.1100	0.053		
1	3 (2.3%)	3 (3.1%)	-		
2	15 (11.5%)	14 (14.4%)			
2 3	88 (67.2%)	72 (74.2%)			
4	14(10.7%)	3 (3.1%)			
5	8 (6.1%)	4 (4.1%)			
Unknown	3 (2.3%)	1 (1.0%)			
Lesion characteristics					
Proximal SFA	66 (50.4%)	51 (52.6%)	0.74		
Mid	92 (70.2%)	77 (79.4%)	0.119		
Distal	100 (76.3%)	84 (86.6%)	0.05		
P1	34 (26.0%)	17 (17.5%)	0.13		
P2	14 (10.7%)	0 (0.0%)	< 0.00		
P3	10 (7.6%)	0 (0.0%)	0.00		
Total length, mm	194.4±86.3 [160, 100-450]	195.0±64.5 [190, 100-350]	0.94		
Restenotic lesion	68 (51.9%)	43 (44,3%)	0.258		
Lesion calcification			0.52		
None	41 (31.3%)	20 (20.6%)			
Slight	33 (25.2%)	47 (48.5%)			
Moderate	31 (23.7%)	21 (21.6%)			
Severe	26 (19.8%)	9 (9.3%)			
Diameter stenosis, %	93.5±8.6 [100, 70-100]	95.4±7.6 [100, 70-100]	0.07		
Total occlusions	69 (52.7%)	61 (62.9%)	0.12		
Subintimal	11 (8.4%)	17 (17.5%)	0.03		
Re-entry device used	6 (4.6%)	9 (9.3%)	0.15		

Freedom from TLR


Zeller T, J Endovasc Ther 2014;21:359

Summary & Conclusions

- Conventional balloon and BMS have relatively high restenosis rates in long SFA lesions.
- Newer devices esp. drug-eluting technologies have shown promising data.
- DES and DEB have advantages and limitations.
- DEB may be not effective as a stand alone therapy in long SFA lesions. Stenting or atherectomy may be required as adjunctive treatment.
- Zilver PTX has shown excellent patency and safety data.
- We need RCTs and large-scale long-term comparing DES and DCB in long SFA lesions.

