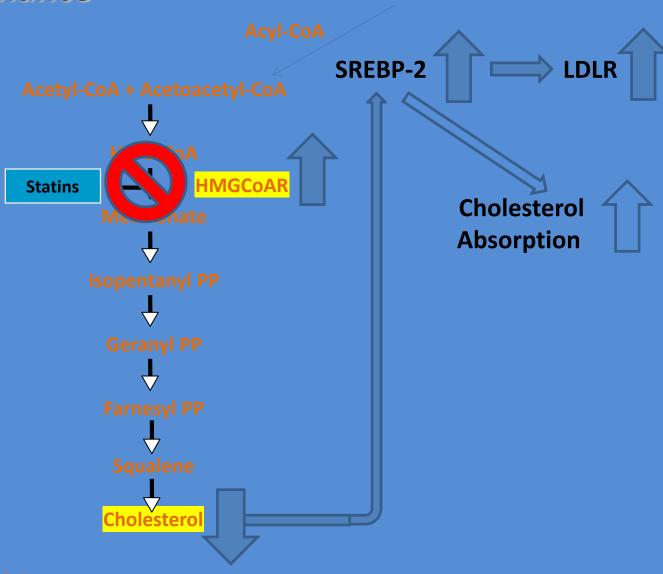
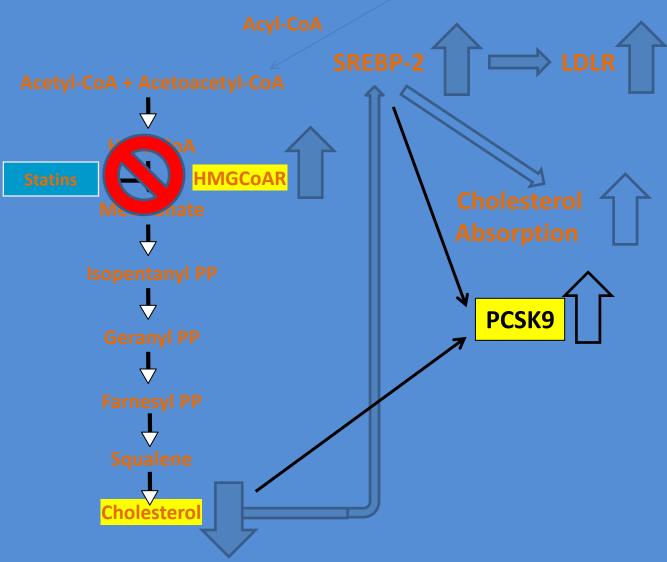

PCSK9 AND ITS INHIBITION

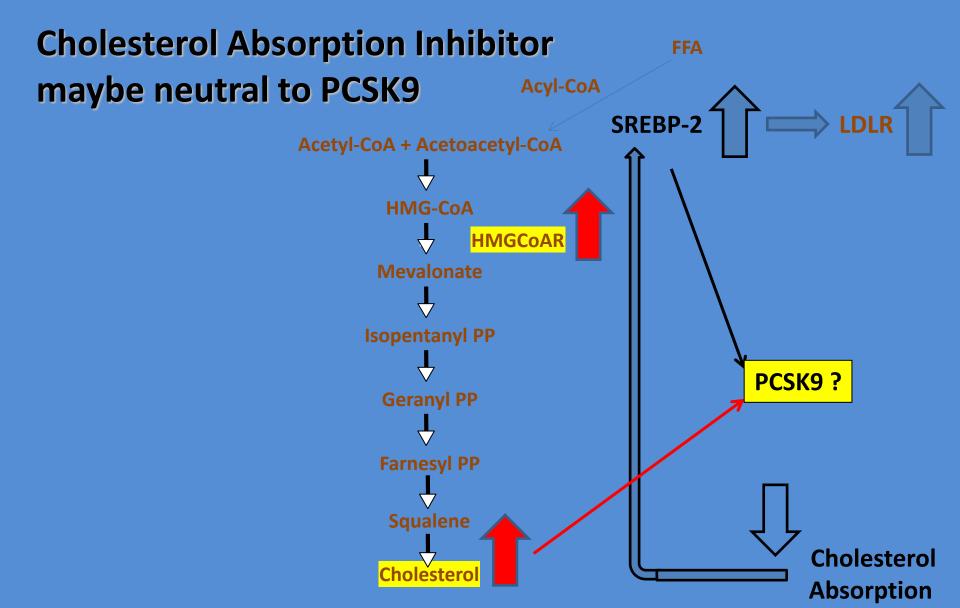
HAN, KI HOON Univ. of Ulsan College of Medicine Asan Medical Center


Role of PCSK9

Outcome of PCSK9 inhibition


Statins may enhance PCSK9

PP = pyrophosphate.


Reproduced from Ray and Cannon. *Curr Opin Lipidol*. 2004;15:637, with permission Ray and Cannon. *Am J Cardiol*. 2005;96(suppl):54F.

Statins may enhance PCSK9

PP = pyrophosphate.

Reproduced from Ray and Cannon. *Curr Opin Lipidol*. 2004;15:637, with permission.

PP = pyrophosphate

Reproduced from Ray and Cannon. *Curr Opin Lipidol*. 2004;15:637, with permission. Ray and Cannon. *Am J Cardiol*. 2005;96(suppl):54F.

Fibrates increase PCSK9

ALMANOCHRONE-PAGASIA	Post	treatme	nt	Pre	treatme	nt	of recovering and	Mean Difference	I W. Machort	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Lambert et al., 2008	373	198	115	408	216	115	15.0%	-35.00 [-88.55, 18.55]	2008	
Mayne et al., 2008	690	138	19	604	110	19	12.4%	86.00 [6.65, 165.35]	2008	
Troutt et al., 2010	120	37.52	22	96	28.14	22	17.8%	24.00 [4.40, 43.60]	2010	
Chan et al., 2010	148	147.06	15	166	147.06	15	10.0%	-18.00 [123.25, 87.25]	2010	
Costet et al., 2010	334	82	19	264	65	19	15.7%	70.00 [22.95, 117.05]	2010	l
Noguchi et al., 2011a	444.8	101.3	14	266.7	56.6	14	14.3%	178.10 [117.32, 238.88]	2011	
Noguchi et al., 2011b	380	84.8	14	272	62	14	14.9%	108.00 [52.97, 163.03]	2011	1
Total (95% CI)		Uktorie n. vise	218		more not on a	218	100.0%	60.37 [11.04, 169.71]		•
Heterogeneity: Tau* = 3	468.80	Chr = 39	76, df	= 6 (P .	0.00001); P = 8	5%			-t-t-l-t-t-
Test for overall effect Z	A STATE OF THE STA						-07M			-200 -100 0 100 200 PCSK9 Decrease PCSK9 increase

Circulating Levels of Proprotein Convertase Subtilisin Kexin Type 9 are Elevated by Fibrate Therapy: A Systematic Review and Meta-Analysis of Clinical Trials. Sahebkar, Amirhossein; PharmD, PhD

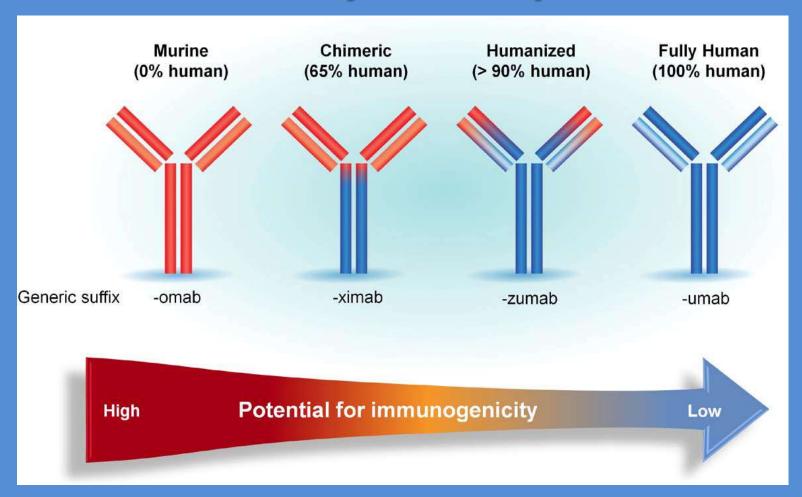
Cardiology in Review. 22(6):306-312, November/December 2014.

DOI: 10.1097/CRD.00000000000000025

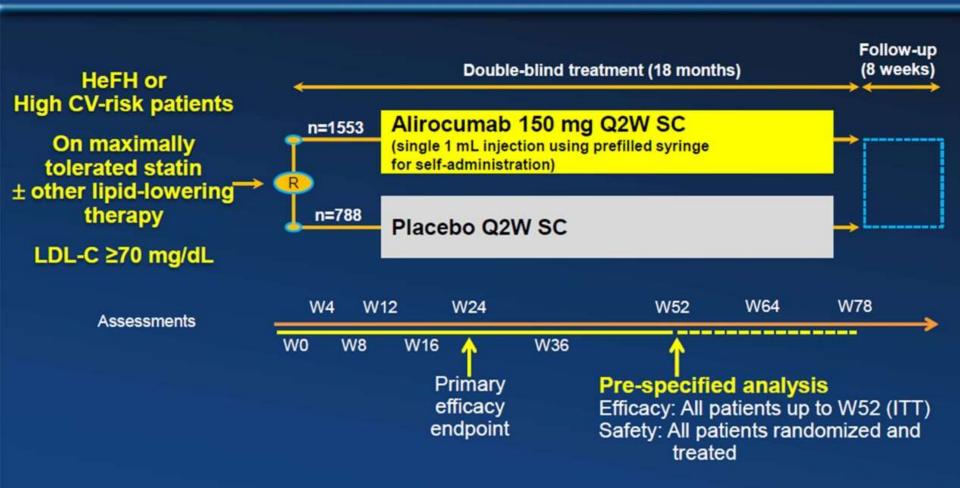
FIGURE 1 . Forest plot detailing weighted mean difference and 95% confidence intervals for the impact of fibrate therapy on circulating PCSK9 concentrations.

Regulatory factors for PCSK9

- sterol regulatory element (SRE) for SREBP binding
- hepatocyte nuclear factor-1 α (HNF1 α) potentiates SRE activity
- PPAR-alpha upregulates PCSK9
- mTOR1 downregulates HNF1α
- Sirtuin 6, an NAD+-dependent histone deacetylase is a transcriptional repressor of the *PCSK9*
- FoxO3 recruits Sirtuin 6 to the *PCSK9* promoter
- Farnesoid X receptor downregulates PSCK9


Summary (1)

- PCSK9 competes with LDL particles on the binding with LDLR.
- PCSK9-LDLR destructs LDLR in endosome.
- PCSK9 activity/expression is generally increased under statin/fibrate medication.
- PCSK9 inhibition may increase LDL uptake and enhance cycling of LDLR.

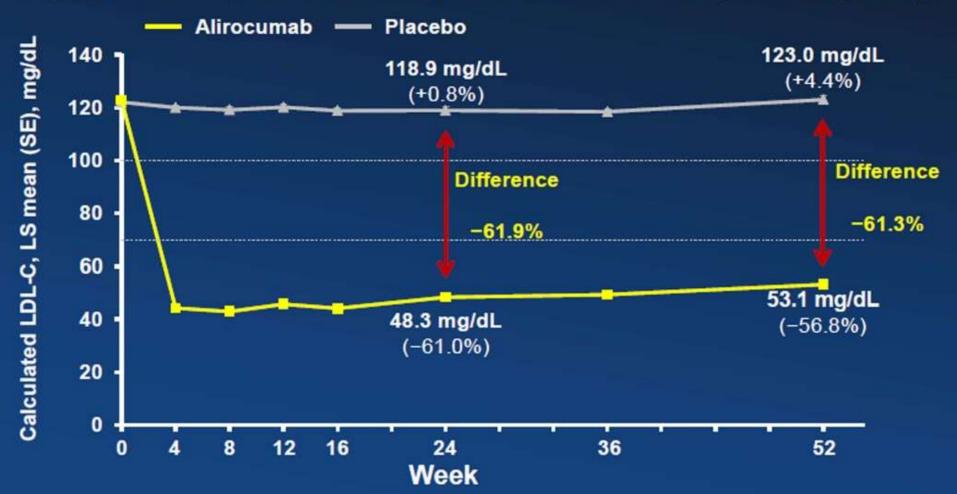

Selected PCSK9 inhibitors

Company	molecule	Description	Clinical stage
Regeneron/sanofi	Alirocumab	mAb	Phage 3
Amgen	Evolocumab	mAb	Phase 3
Pfizer	Bococizumab	mAb	Phase 3
Roche	RG-7652	mAb	Phase 2
Eli Lilly	LY3015014	mAb	Phase 2
Alnylam	ALN-PCS02	RNAi	Phase 1

Antibody Development

ODYSSEY LONG TERM Study Design

85.8% (2009/2341) completed 52 weeks (both treatment arms)
26.1% (405/1553 alirocumab) and 25.6% (202/788 placebo) had completed 78 weeks by time of this analysis


Mean treatment duration: 65 weeks (both treatment arms)

ODYSS

Alirocumab Maintained Consistent LDL-C Reductions Over 52 Weeks

Achieved LDL-C Over Time

All patients on background of maximally tolerated statin ± other lipid-lowering therapy

Overview of ODYSSEY Phase 3 Clinical Trial Program

14 global phase 3 trials including >23,500 patients across >2,000 study centers

4HeFH population

4 Add-on to max-tolerated statin 4(± other LMT)

400YSSEY FH1 (NCT01623115; EFC12492)

4LDL-C ≥ 70 mg/dL OR LDL-C ≥ 100 mg/dL 4N=471; 18 months MODYSSEY

40DYSSEY FH II (NCT01709500; CL1112)

4LDL-C≥70 mg/dL OR LDL-C≥100 mg/dL 4N=250: 18 months MODYSSEY

400YSSEY HIGH FH (NCT01617655; EFC12732)

4LDL-C≥160 maidL 4N=105: 18 months

#ODYSSEY

CODYSSEY

400YSSEY OLE (NCT01954394; LTS 13463)

40pen-label study for FH from EFC 12492. CL 1112 EFC 12732 or LTS 11717

4N>1000:30 month

(ODYSSEY

40DYSSEY LONG TERM (NCT01507831; LTS11717)

4LDL-C≥70 mg/dL 4N=2,100: 18 months

CODYSSEY

40DYSSEY OUTCOMES (NCT01663402; EFC11570)

4LDL-C ≥70 mg/dL

4 N=18,000; 64 months MODYS SEY

4PH=familial hypercholesterolemia; HC=hypercholesterolemia; LMT=lipid-modifying therapy; OLE=open-label extension. 4*For the ODYSSEY COMBO II other LMT not allowed at entry.

4ClinicalTrials gov. ODYSSEY Phase 3 Trials http://clinicaltrials.gov. Accessed February 12, 2014.

4HC in high CV risk population

4Add-on to max-tolerated statin 4(± other LMT)

40DYSSEY COMBO I (NCT01644175; EFC11568)

4LDL-C ≥70 mg/dL OR LDL-C ≥100 mg/dL

4 N= 306; 12 months

4"ODYSSEY COMBO II (NCT01644188; EFC11569)

4LDL-C≥70 maldL OR LDL-C≥100 maldL

4N=660: 24 months MODYSSEY

4Additional populations

40DYSSEY MONO (NCT01644474; EFC11716)

4Patients on no background LMTs

4LDL-C≥100 mg/dL 4N=100: 6 months

40DYSSEY ALTERNATIVE (NCT01709513; CL1119)

4Patients with defined statin intolerance

4LDL-C ≥70 mg/dL OR LDL-C ≥ 100 mg/dL

4N=250:6 months

≠ODYSSEY

400YSSEY CHOICE I (NCT01926782; CL1308)

4LDL-C ≥70 mg/dL OR LDL-C ≥100 mg/dL

N=700: 12 months

MODYSSEY

40D YSSEY CHOICE II (N CT0202 3879; EF C13786)

4Patients not treated with a statin.

4LDL-C≥70 mg/dL OR LDL-C≥100 mg/dL

4N=200: 6 months

CODYSSEY

MODYSSEY

400 YSSEY OPTIONS I (NCT01730040; CL1110)

4Patients not at goal on moderate dose at or vastatin-4LDL-C≥70 ma/dL OR LDL-C≥100 ma/dL

4N<350, 6 months.

40DYSSEY OPTIONS II (NCT01730053; CL1118)

4P atients not at goal on moderate dose rosuvastatin

4LDL-C≥70 mg/dL OR LDL-C≥100 mg/dL

4N=300: 6 months

Reference	Trial	Patient population	N	MAb dose regimen	Comparator regimen	% LDL-C reduction
Evolocumab	1 7	M. M.		1000	1000	
[32]	LAPLACE-2	Primary hypercholesterolaemia and mixed dyslipidaemia. Moderate to high intensity statin	2067	140 mg/2 weeks or 420 mg/month	Ezetimibe 10 mg daily or placebo	Mean at weeks 10 and 12: 66–75% (140 mg/2 weeks) 63–75% (420 mg/month) 17–21% (ezetimibe)
[33]	DESCARTES	Hyperlipidaemia, on diet with ar without LLT	901	420 mg/ 4 weeks	Placebo	Mean at week 52: 57%; 56% on diet alone 62% on ATOR 10 mg 57% on ATOR 80 mg 49% on ATOR 80 mg/EZE 10 mg
[34,35]	OSLER	Primary hypercholesterolaemia, mixed dyslipidaemia or HeFH with or without LLT (70% on statin)	4465	140 mg/2 weeks or 420 mg/month	Placebo	Mean week 12: 61%
Alirocumab						
[36]	ODYSSEY COMBO I	Hypercholesterolaemia, on maximally tolerated statin ± other LLT	316	75/150 mg every 2 weeks ^a	Placebo	LS mean week 24: 46%
[37]	ODYSSEY COMBO II	Hypercholesterolaemia, on maximally tolerated statin	720	75/150 mg every 2 weeks ^a	Ezetimibe 10 mg/day	LS mean week 24: 51% [alirocumab] 21% [ezetimibe]
[38]	ODYSSEY OPTIONS I	Hypercholesterolaemia, on ATOR 20 or 40 mg	355	75/150 mg every 2 weeks ^a	Ezetimibe 10 mg/day Doubling ATOR dose Switching to ROS 40 (ATOR 40 only)	LS mean week 24: 44-54% [alirocumab], 21-23% [ezetimibe], 4.8-5.0% [Doubling ATOR dose], 21% [Switching to ROS]
[39]	ODYSSEY OPTIONS II	Hypercholesterolaemia, on ROS 10– 20 mg	305	75/150 mg every 2 weeks ^a	Ezetimibe 10 mg/day doubling ROS dose	LS mean week 24: 38-51% [alirocumab], 11-14% [ezetimibe], 16% [Doubling ROS dose]
[40]	ODYSSEY CHOICE I	Hypercholesterolaemia, on maximally tolerated statin therapy or statin- naïve or intolerant	803	75/150 mg every 2 weeks ^a or 300 mg/4 weeks	Placebo	LS mean week 24: statin-naïve 52%, on statin 59% (300 mg/4 week)

ATOR, atorvastatin; EZE, ezetimibe; FEN, fenofibrate; HeFH, heterozygous familial hypercholesterolaemia; IDL-C, low-density lipoprotein cholesterol; ILT, lipid-lowering therapy; LS, least squares; MAb, monoclonal antibody; N, number of patients; ROS, rosuvastatin.

2341

75/150 mg every 2 weeks^a

or 150 mg/4 weeks

150 mg/2 weeks

Placebo

Placebo

Trial acronyms: LAPLACE-2: LDL-C Assessment With Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined With Statin Therapy 2; DESCARTES: Durable Effect of PCSK9 Antibody Compared with Placebo Study; OSLER: Open Label Study of Long Term Evaluation Against LDL-C Trial.

Hypercholesterolaemia, on EZE, FEN

Hypercholesterolaemia, on maximally

tolerated statin ± other LLT

or diet alone

[41]

[42]

ODYSSEY CHOICE II

ODYSSEY LONG TERM

Chapman MJ, Stock JK, Ginsberg HN; PCSK9 Forum (http://www.pcsk9forum.org). PCSK9 inhibitors and cardiovascular disease: heralding a new therapeutic era. Curr Opin Lipidol. 2015 Dec;26(6):511-20.

LS mean week 24: 56%

(150 mg/4 week) Mean week 24: 62%

[&]quot;Alirocumab dose was increased to 150 mg every 2 weeks at week 12 if LDL-C > 1.8 mmol/l or 70 mg/dl at week 8, or not achieving LDL-C goal at week 8 (OPTIONS I and II).

Agent (Trial)	Study description		ı	DL-C (% change fro	om baseline to study end-po	oint, except as indic	rated)	
SAR	12-week double-blind, placebo-controlled trial in 183 patients with LDLC ≥100 mg/dl on stable atorvastatin therapy [36**]	Placebo	SAR 50 mg Q2W	SAR 100 mg Q2W	SAR 150 mg Q2W	SAR 200 mg Q4W	SAR 300 mg Q4W	
		-5.1	-39.6*	-64.2*	-72.4°	-43.2*	-47.7°	
	8-week double-blind, placebo-controlled trial in 92 patients with LDL-C ≥ 100 mg/dl on atorvastatin 10 mg [37]	Atorvastatin 80	mg and Placebo	Atorvastatin 1	0 mg and SAR 150 mg Q2W		n 80 mg and) mg Q2W	
		-1	7.3		-66.2 [†]	-7	3.21	
	12-week double-blind, placebo-controlled trial in 77 patients with heterozygous FH and LDL-C ≥ 100 mg/dl on stable statin dose (with ar without ezetimibe) therapy [38**]	Piacebo	SAR 150 mg Q4W	SAR 200 mg Q4W	SAR 300 mg Q4W	SAR 150 mg Q2W		
	Contract Caronic Section 2	-10.6	-28.9	-31.5	-42.5*	-67.9*		
AMG (LAPLACE-TIMI57)	12-week double-blind, placebo-controlled trial in 631 patients with LDLC ≥85 mg/dl on stable statin dose (with or without ezetimibe) therapy [39]	AMG 70 mg Q2W	AMG 105 mg Q2W	AMG 140 mg Q2W	AMG 280 mg Q4W	AMG 350 mg Q4W	AMG 420 mg Q4W	
	, ,,,,,,	-41.8*,a	-60.2*,°	-66.1*.ª	-41.8*,¤	-50.0*,a	-50.3*,a	
(RUTHERFORD)	12-week double-blind, placebo-controlled trial in 167patients with heterozygous FH and LDL-C ≥ 100 mg/dl on stable statin dose (with or without ezetimibe) therapy [40**]	Plo	cebo	AA	AG 350 mg Q4W		420 mg 4W	
		1	.1		-42.7 ^{††}	-5	5.2 ^{††}	
(MENDEL)	12-week randomized, placebo-controlled trial for AMG (ezetimibe not masked) in 406 patients not already on a statin [41*]	AMG 70 mg Q2W	AMG 105 mg Q2W	AMG 140 mg Q2W	AMG 280 mg Q4W	AMG 350 mg Q4W	AMG 420 mg Q4W	Ezetimibe 10 mg
		-37.3*,°	-40.2*,a	-47.2*.°	-43.6*,°	-47.7* ^{,0}	-52.5* ^{,a}	-14.7
(GAUSS)	12-week double-blind, placebo and ezetimibe- controlled trial in 160 statin-intolerant patients [42**]	AMG 280 mg Q4W	AMG 350 mg Q4W	AMG 420 mg Q4W	AMG 420 mg Q4W 10 mg			V and Ezetimibe Omg
	W 1 1798 E &	-40.8*	-42.6"	-50.7*	-63.0	•	2	14.8

AMG, AMG145; FH, familial hypercholesterolemia; Q2W, every 2 weeks; Q4W, every 4 weeks; SAR, SAR236553/REGN727.

*P<0.0001 versus placebo.

*P<0.001 versus atorvastatin 80 mg and placebo.

*P<0.001 versus placebo.

*P<0.001 versus ezetimibe and placebo.

*mean change in LDL-C versus placebo.

Outcome studies

	FOURIER	ODYSSEY OUTCOMES	SPIRE I	SPIRE II
PCSK9 inhibitor v. Placebo	Evolocumab	Alirocumab	Bococizumab	Bococizumab
Planned Enrollment	22,500	18,000	12,000	6,300
Primary Endpoint	CV death, MI, hospitalization for unstable angina, stroke, or coronary revascularization	CHD death, MI, ischemic stroke, or unstable angina requiring hospitalization	CV death, MI, stroke, or hospitalization for unstable angina needing urgent revascularization	CV death, MI, stroke, or hospitalization for unstable angina needing urgent revascularization
Study Population	History of CV disease and high risk for recurrent event	Hospitalized for ACS in previous 4- 52 weeks	High risk for CV events	High risk for CV events
LDL-C at Entry	≥ 70 mg/dL	≥ 70 mg/dL	70-100 mg/dL	≥ 100 mg/dL
Dose (if available) & Frequency of Study Drug	Q2W and QM	Q2W	150 mg Q2W	150 mg Q2W
Estimated Completion Date	December 2017	January 2018	August 2017	August 2017

Summary (2)

- PCSK9 inhibition induces LDLc reduction by more than 50%.
- PCSK9 inhibition also reduces Lp(a) levels.
- Effects of PCSK9 inhibitor seem to be consistent even under maximal statin doses, or even for hetero-FH patients. Moreover interpersonal variation seems to be small, too.
- CVD prevention through PCSK9 inhibition will be proved soon. (FOURIER study etc.)

Question 1;

- PCSK9 is mainly expressed in adult liver, small intestine, kidneys, and pancreas and circulating PCSK9 can inhibit VLDLR, apoER2, LRP1, CD36 in those organs and adipose tissue.; PCSK9 inhibition may be associated with fatty deposition in fat and liver (NASH)?
- Annexin A2, a natural extrahepatic PCSK9
 inhibitor, is highly distributed in adrenal gland;
 PCSK9 inhibitor does little to adrenal gland

Question 2

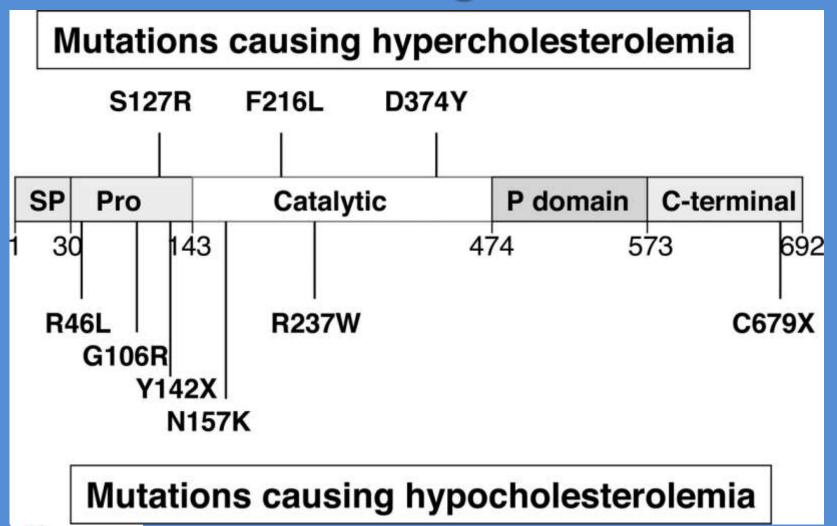
- PCSK9 is highly expressed in pancreatic beta cells; why?
- Could PCSK9 inhibition aggravate insulin resistance (MS)?
- LDLR and CD81, 2 HCV entry receptors are dose dependently downregulated by PCSK9; May PCSK9 inhibition increase the risk of HCV infection?

Question 3

 PCSK9 may enhance CD36-related activities (in macrophages); may be of atherogenic?

PCSK9 is not alone

PCSK		Tissue distribution	Subcellular localization	Secretion
Kexin-like	(R/K)Xn(R/K)			
PCSK1		Neuroendocrine	Acidic regulated secretory granules	Secreted
PCSK2		Neuroendocrine	Acidic regulated secretory granules	Secreted
PCSK3 (Furin)		Ubiquitous	TGN, cell surface and endosames	Shed
PCSK4		Germinal	Cell surface?	Shed
PCSK5		Widespread: adrenal cortex, intestine, kidney and ovary	Cell surface and ECM	PCSK5A: secreted; PCSK5B: shed
PCSK6 (PACE4)		Widespread: muscle, heart, pituitary, intestine, cerebellum and kidney	Cell surface and ECM	Secreted
PCSK7		Ubiquitous	TGN, cell surface and endosomes	Not secreted
Pyrolysin-like	RX(L/V/I)X]			W. San Carlotte
PCSK8 (SKI-1)	Designation and the same	Ubiquitous	cis and medial Golgi	Not secreted
Proteinase K-like	(V/I/LIFAQ)	42362447.EXMON	HE HE HOUSE ON THE CONTRACTOR OF THE	A PERSONAL DESCRIPTION OF THE PROPERTY OF THE
PCSK9	Autoritication white	Liver, intestine and kidney	TGN and extracellular	Secreted


ECM, extracellular matrix; PACE4, paired basic amino acid cleaving enzyme 4; SKI-1, subtilisin/kexin isozyme 1; TGN, trans-Galgi network. Adapted and reprinted with permission from [2].

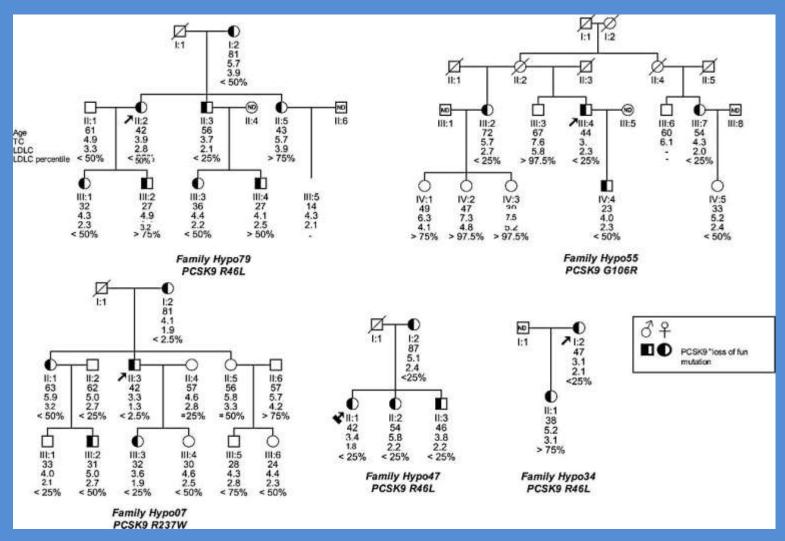
	Carotid ath	VSMC	Ма	Adipose	Cardio- myo	
> 1		-	-	• (?)	-	
> 2						
> 3 (F)						
> 4						
> 5						
> 6 (P)						
> 7						
> 8						
> 9				• (?)		

Other Future Perspetives

- Other PCSK9 inhibition;
 - Vaccination; Vaccination with small peptides directed to the PCSK9 N-terminus, which interacts with the LDL-R, resulted in prolonged antibody production (half-life about 4 months), accompanied by a significant reduction in lipoproteins for up to 1 year (> 50% LDL-C reduction in LDL-R^{+/-}mice)
 - Chemicals; Adnectin BMS-962476 (molecular weight ~ 11 kDa; Bristol-Myers Squibb) successfully reduced free PCSK9 (>99% reduction) and LDL-C (~ 55% reduction), with succeeding increases in total PCSK9 indicating reduced clearance of the Adnectin/PCSK9 complex.
- Other PCSK modulators; 3 and 6?

PCSK9 gene.

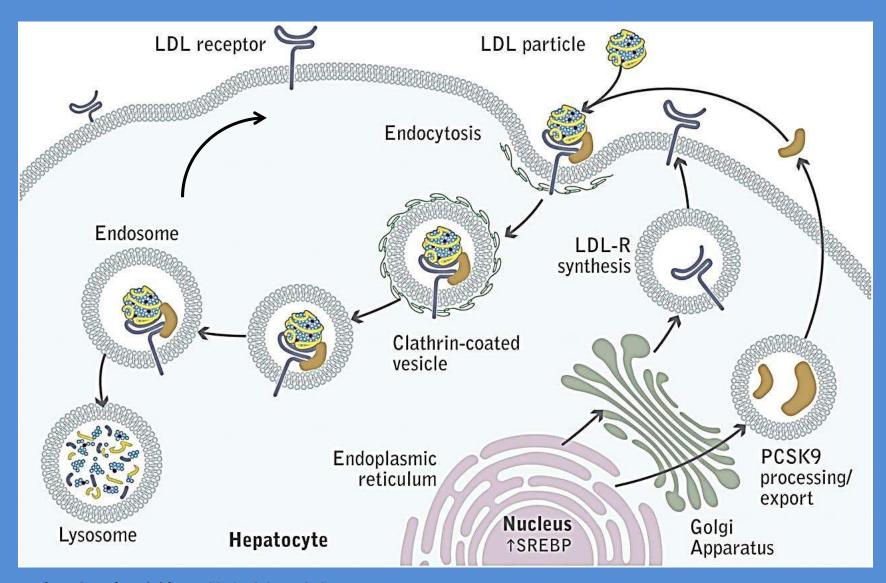
Knut Erik Berge et al. Arterioscler Thromb Vasc Biol. 2006; 26:1094-1100


 Table 1

 Loss-of-function and gain-of-function PCSK9 mutations in different geographical patients and clinical features associated with the mutations.

Mutations of PCSK9		Geographical origin	Clinical features	Change of LDL-C concentration	In vitro testing	References
Loss-of- function	C679X	French, American	Reduce 88% risk of CAD	Decreased by 27%	Cell culture	Cohen JC et al. [16,20]
	R46L	Danish, American	Reduce 47% risk of CAD	Decreased by 8–9%; 9–15%; 11–16%	Cell culture	Cohen JC et al. [20]
	Y142X	French	Hypocholesterolemia	Decreased by 28%		Cohen JC et al. [20]
	G236S N354I	Norway	Hypocholesterolemia	Not available Not available	Determined in HepG2 or HEK293 cells transiently transfected	Cameron J et al. [30]
	Q152H	French-Canadian family	Hypocholesterolemia	Decrease 48%	Cells transiently transfected with PCSK9- Q152H cDNA	Mayne J et al. [15]
Gain-of- function	R215H	Norway	Hypercholesterolemia	Not available	Determined in HepG2 or HEK293 cells transiently transfected	Cameron J et al. [30]
	S127R	French	Hypercholesterolemia	Not available		Abifadel et al.
	E32K	Japanese	Hypercholesterolemia	2.1-Fold, 1.4-fold higher than control, separately	Transiently transfected HepG2 cells	Noguchi T et al. [31]
	E670G	Chinese	Increasing HDL-C and ApoA1/ ApoB in male;	Not available	Not available	Aung LH et al. [32]
		Taiwan	Reducing LDL-C	Not available	Not available	Hsu LA et al. [34]

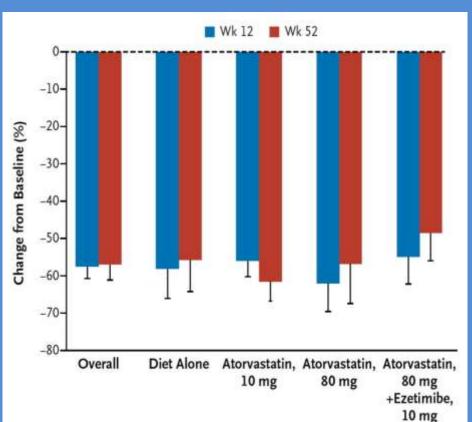
N.-Q.Wu, J.-J. Li / Clinica Chimica Acta 431 (2014) 148–153


Pedigrees of families with mutations R46L, G106R, N157K, or R237W in the PCSK9 gene.

Knut Erik Berge et al. Arterioscler Thromb Vasc Biol. 2006;

The role of PCSK9

Comparison of Small-Molecule and Monoclonal Antibody Therapeutics


	Small Molecule	Monoclonal Antibody
Size, kDa Structure Method of production	≈0.5 Chemical entity Controlled chemical synthesis; easily controlled	≈150 Immunoglobulin Purification from cell culture media; more complex
Target Target specificity Metabolism disposition	Intracellular or extracellular Low(er) Hepatic/renal	Extracellular High RES, target-mediated
Administration Dosing Can cross BBB	Oral Approximately daily Potentially	Parenteral Approximately Q2W–Q4W No

Q2W indicates every 2 weeks; Q4W, every 4 weeks; and RES, reticuloendothelial system.

Circulation. 2013;127:2222-2230

Agent	Binding	Target	Mechanism	Type of Antibody		ications* (as of December 2012) Indication(s)
			of Action†	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
<u>Oncology</u>						
Alemtuzumab	(Campath)	CD52	ADCC, CDC	Humanized		CLL
Bevacizumab	(Avastin)	VEGF	Ag	Humanized		CRC, non–small-cell lung and renal cell carcinomas, glioblastoma
Brentuximab	(Adcetris)	CD30	ADC	Chimeric, with MI	MAE	HL, systemic anaplastic large-cell lymphoma
vedotin				(microtubule-disr	upting agent)	
Cetuximab	(Erbitux)	EGFR	Ag, ADCC	Chimeric CRC,		squamous cell carcinoma of the head and neck
Ibritumomab	(Zevalin)	CD20	Ag	Murine, with yttri	um-90 or	NHL
				indium-111 (deliv	ery of radionuclion	de)
Ipilimumab	(Yervoy)	CTLA-4	Ag	Human		Melanoma
Ofatumumab	(Arzerra)	CD20	Ag,ADCC,CDC	Human		CLL
Panitumumab (Vectibix)	EGFR	Ag	Human		CRC
Pertuzumab	(Perjeta)	HER2	Ag, ADCC	Humanized		Breast cancer
Rituximab	(Rituxan)	CD20	Ag,ADCC,CDC	Chimeric		NHL, CLL
Tositumomab	(Bexxar)	CD20	Ag	Murine, with iodi		NHL
			(delivery of radio	nuclide), possibly A	ADCC and CDC	
Trastuzumab	(Herceptin)	HER2	Ag, ADCC	Humanized	Breast	cancer, gastric or gastroesophageal junction adenocarcinoma
Immunomodula	atory settings					
Adalimumab	(Humira)	TNFα	Ag,ADCC,CDC38	Human		RA, PsA, AS, CD, PsO, JIA
Basiliximab	(Simulect)	CD25	Ag	Chimeric		Organ (kidney) transplantation rejection
Belimumab	(Benlysta) Soluk	ole human BlyS	Ag	Human		Systemic lupus erythematosus
Canakinumab	(Ilaris)	IL-1β	Ag	Human		Cryopyrin-associated periodic syndrome
Certolizumab po	egol (Cimzia)	TNFα	Ag	Humanized pegyla	ated Fab	RA, CD
Golimumab	(Simponi)	TNFα	Ag,ADCC,CDC38	Human		RA, PsA, AS
Infliximab	(Remicade)	TNFα	Ag,ADCC,CDC38	Chimeric		RA, PsA, AS, CD, ulcerative colitis, PsO
Natalizumab	(Tysabri)	α4-Integrin	Ag	Humanized		Multiple sclerosis, CD
Omalizumab	(Xolair)	lgE	Ag	Humanized		Allergic asthma
Rituximab	(Rituxan)	CD20	Ag,ADCC,CDC	Chimeric		RA, Wegener granulomatosis, microscopic polyangiitis
Tocilizumab	(Actemra)	IL-6 receptor	Ag	Humanized		RA, systemic JIA
Ustekinumab	(Stelara)	p40 Subunit	Ag	Human		PsO
		of IL-12 and IL-23	3			
<u>Cardiology</u>						
Abciximab	(ReoPro) Glycop	orotein IIb/IIIa	Ag	Chimeric Fab		Percutaneous coronary intervention
<u>Other</u>						
Denosumab	(Prolia, Xgeva)	RANKL	Ag	Human	High fracture risk	from PMO, CRPC, or aromatase inhibitor–treated breast cancer
Eculizumab		ement protein C5	Ag		_	urnal hemoglobinuria, atypical hemolytic uremic syndrome
Palivizumab	(Synagis)	RSV F protein	Ag	Humanized R		SV infection
Ranibizumab	(Lucentis)	VEGF-A	Ag		Wet age-related	macular degeneration, macular edema postretinal vein occlusion
Raxibacumab		lus anthracis toxin		Human		Inhalation anthrax
						Circulation. 2013;127:2222-2230

DESCARTES: 52-week efficacy and safety of evolocumab 420mg q4w

%	Placebo N=302	Evolocumab N=599
Any AE	74.2	74.8
SAE	4.3	5.5
Discontinue	1.0	2.2

Blom et al. NEJM 2014

ODYSSEY LONG TERM: safety

% (n) of patients All pts on background of maximal statin therapy ± other lipid- lowering therapy	Alirocumab (n=1550)	consecutive LDL cholesterol <25 mg/dL (n = 562)	Placebo (n=788)
TEAEs	78.6% (1218)	71.9% (404)	80.6% (635)
Treatment-emergent SAEs	16.5% (255)	14.6% (82)	17.6% (139)
TEAE leading to death	0.5% (7)	0.5% (3)	1.0% (8)
TEAEs leading to treatment discontinuation	6.2% (96)	3.6% (20)	5.5% (43)

% (n) of patients All pts on background of maximally tolerated statin ± other lipid-lowering therapy	Alirocumab (n=1550)	Alirocumab with 2 consecutive LDL-C <25 mg/dL (n=562)	Placebo (n=788)
General allergic reaction events*	9.0% (140)	6.0% (34)	9.0% (71)
Treatment-emergent local injection site reactions	5.8% (90)	3.7% (21)	4.3% (34)
Neurological events‡	4.2% (65)	1.8% (10)	3.9% (31)
All cardiovascular events†	4.0% (62)	3.2% (18)	4.4% (35)
Ophthalmological events‡	2.5% (38)	1.8% (10)	1.9% (15)
Neurocognitive disorders‡	1.2% (18)	0.5% (3)	0.5% (4)
Haemolytic anaemia	0	0	0