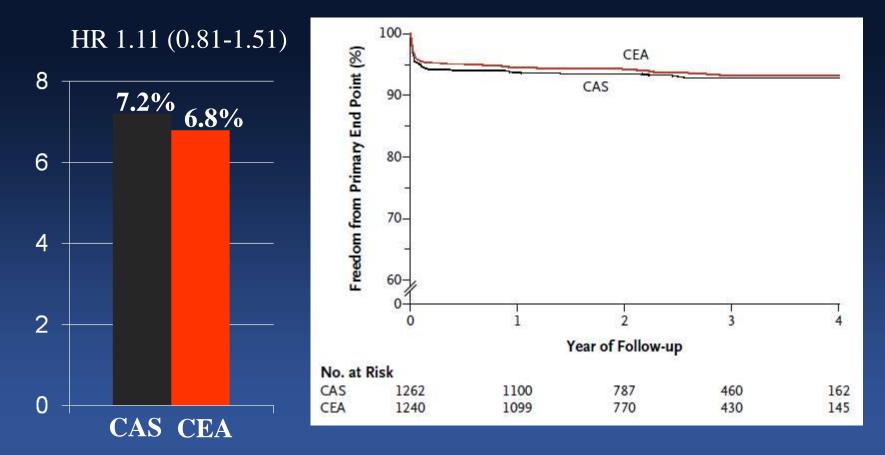
Carotid Artery Stenting: indication

Asymptomatic Carotid Artery Stenosis: Is Really Risky? Must Be Recanalized?

Seung-Whan Lee, MD, PhD


Professor of Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

4-Year Outcomes of the CREST

Primary Endpoint :

any stroke, MI, or death within 30 days + subsequent ipsilateral stroke

Brott TG, et al. N Engl J Med 2010; 363(1):11-23.

Indical Center

CardioVascular Research Foundation

Hazard Ratio for Primary Endpoint <u>4-Year Outcomes of the CREST</u>

Brott TG, et al. N Engl J Med 2010; 363(1):11-23.

ASAN Medical Center

Safety of Stenting and CEA by Symptomatic Status in the CREST

- 1,181 asymptomatic & 1,321 symptomatic patients
- Primary endpoint (periprocedural stroke, MI or death)

	CAS	CEA	HR (95% CI)	P Value
Asymptomatic	3.5%	3.6%	1.02 (0.55-1.86)	0.96
Symptomatic	6.7%	5.4%	1.26 (0.81-1.96)	0.30

Silver FL, et al. Stroke 2011; 42(3): 675-80.

High Risk Features

Surgery

- Restenosis
- Previous RT
- Radical Neck
- CN Palsies
- Cardiac/Pulm dz
- Pre-OHS
- High/Low Lesions
- Contralateral Occl

- Elderly
- String Signs
- Thrombus
- Acute Stroke

Stenting

- Tortuosity
- Poor Access
- Coag/Platelet
- Severe Ca++
- Arch Anatomy

ESCT vs. NASCET measurement

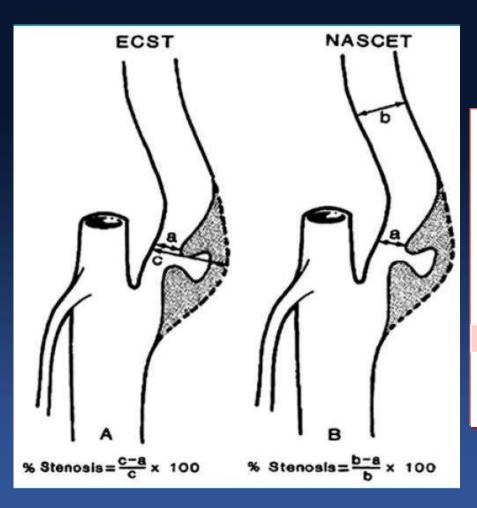


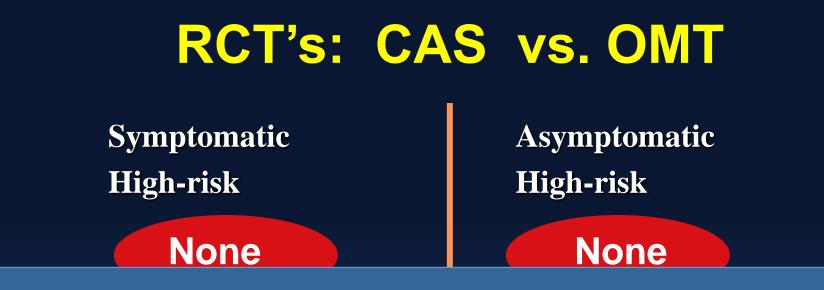
Table 1. Corresponding degrees of carotid artery stenosis (%) in NASCET and ECST.

NASCET	ECST	
30	65	
40	70	
50	75	
60	80	
70	85	
80	91	
90	97	

CEA versus Medical Therapy

Trial	N	Stenosis	Follow-Up	End Point	Medical (%)	CEA (%)	p	RRR (%)	ARR (%)	NNT
Symptomatic										

Very high stroke rate on medical group: very old story


1000 (22)	1,002	20070	5 715	surgical death		0.1	0.004	57	0.5	20.0
ACST (23)	3,120	≥60%	5 yrs	Any stroke	11.8	6.4	0.0001	46	5.4	18.5
VA (149)	444	≥50%	4 yrs	Ipsilateral stroke	9.4	4.7	<0.06	50	4.7	21.3

CEA was significantly superior to Medical therapy, irrespective of symptom

ACCF/SCAI/SVMB/SIR/ASITN 2007 Clinical Expert Consensus Document on Carotid Stenting J Am Coll Cardiol 2007;49:126–70

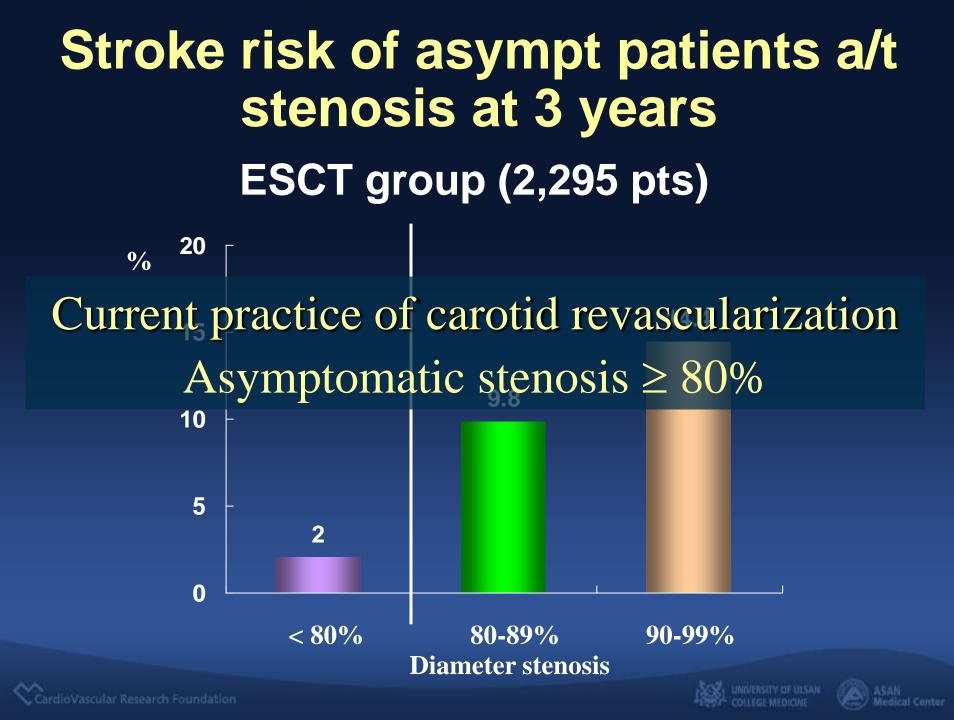
No randomized trial comparing CAS vs. OMT across all risk group

None

None

In absence of "head to head" trials vs. OMT, can only infer ability of CAS to prevent stroke based on: a) registry studies of CAS and b) RCT's comparing it to CEA

Indications for carotid artery revascularization


Indication level

Symptomatic stenosis

Asymptomatic stenosis

Proven	 70-99% stoposis Periproc Outoo complication risk <6% 	 > 60% stenosis Per> 60% of 0% of 0
Acceptable	• 50-69% stenosis • <u>Prip5000</u> complication risk <6%	 > 60% stenosis P pr 60% <3% Planned CABG
Unacceptable	 <29% stenosis, or Periprocedural complication risk > 6% 	 < 60% stenosis or Periprocedural complication risk >3% No indication for CABG
		Circulation 2006;113:2021-2030

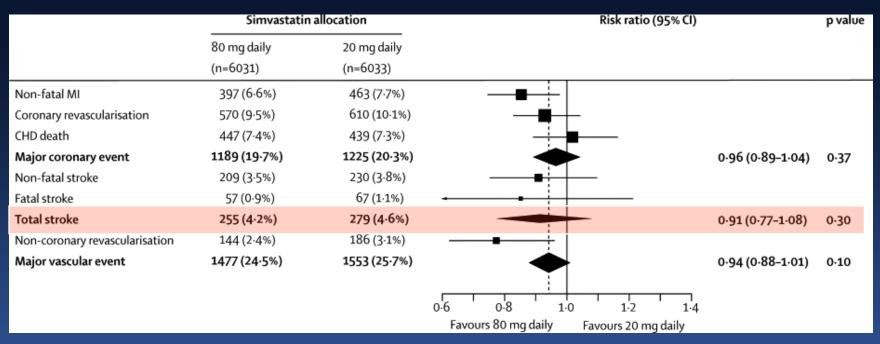
2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/ SCAI/SIR/SNIS/SVM/SVS Guideline on the Management of Patients With Extracranial Carotid and Vertebral Artery Disease: Executive summary

TABLE 7. Summary of Recommendations Regarding the Selection of Revascularization Techniques for Patients With Carotid Artery Stenosis

	Symptoma	tic Patients	Asymptomatic Patients
	50% to 69% Stenosis	70% to 99% Stenosis*	70% to 99% Stenosis*
Endarterectomy	Class I	Class I	
Stenting	~ 50	O LOE: A Class I LOE: B	$\geq 70\%$
The severity of st	enosis is defined a	ccording to angiog	raphic criteria by
		t generally corresp	-
ment. See Section	s 7.2 to 7.4.4 for de	ther accepted mether accepted mether accepted mether and the second second second second second second second s	lous of measure-
LOE indicates leve	el of evidence.		

Catheterization and Cardiovascular Interventions 2013; 81:E75–E123

Asymptomatic Carotid Artery Stenosis: Is Really Risky?



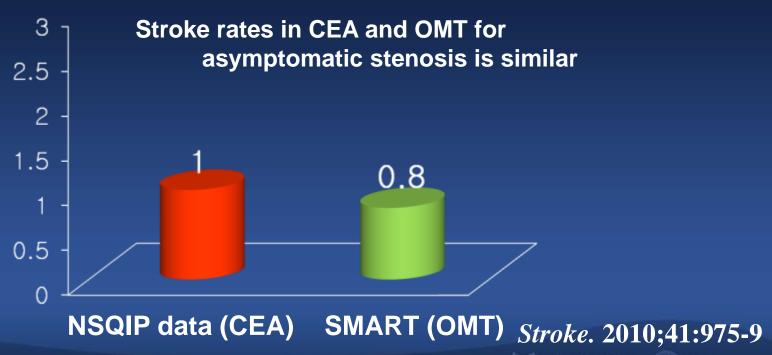
SEARCH: High "Residual Risk" despite intensive medical management (6.7-yr FU)

12 064 survivors of myocardial infarction

12,000 patients allocated 20 mg vs. 80 mg simvastatin Stroke risk almost <u>unchanged (4.2% vs. 4.6%)</u>

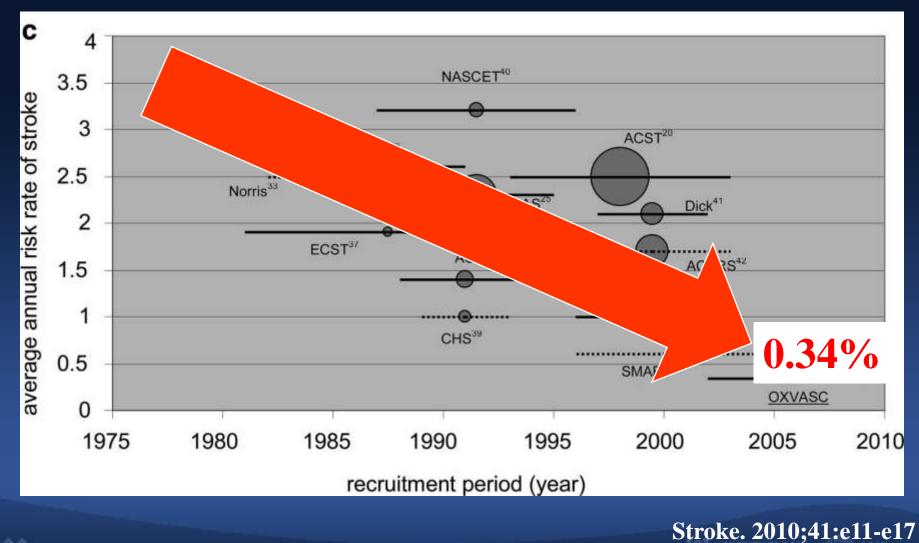
Lancet 2010;376: 1658–69

CEA vs. OMT


ASAN Medical Center

Intensive Medical Therapy

Contemporary Results of Carotid Endarterectomy for Asymptomatic Carotid Stenosis


Karen Woo, MD; Joy Garg, MD; Robert J. Hye, MD; Ralph B. Dilley, MD

Average annual risk

Average annual risk rates of stroke in patients with at least 50% asymptomatic carotid stenosis

COLLEGE MEDICINE

OMT with Events Intensive Medical Therapy

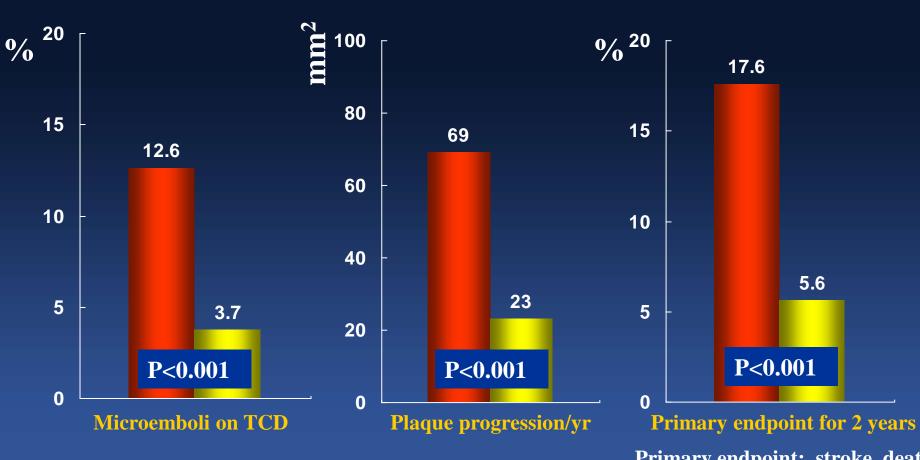
Effects of Intensive Medical Therapy on Microemboli and Cardiovascular Risk in Asymptomatic Carotid Stenosis

J. David Spence, MD; Victoria Coates, BA, HBSc; Hector Li, MD; Arturo Tamayo, MD; Claudio Muñoz, MD, PhD; Daniel G. Hackam, MD, PhD; Maria DiCicco, RVT; Janine DesRoches, RVT; Chrysi Bogiatzi, MD; Jonathan Klein, MD; Joaquim Madrenas, MD, PhD; Robert A. Hegele, MD

- Asymptomatic carotid stenosis (>60%)
- 199 pts, between Jan 2000 and Dec 2002: Ususal care group
- 269 pts, between Jan 2003 and July 2007: Intensive medical therapy group

Outcome values

- 1. Micro-emboli on TCD
- 2. cardiovascular events
- 3. rate of plaque progression
- 4. baseline medical therapy, before and since 2003



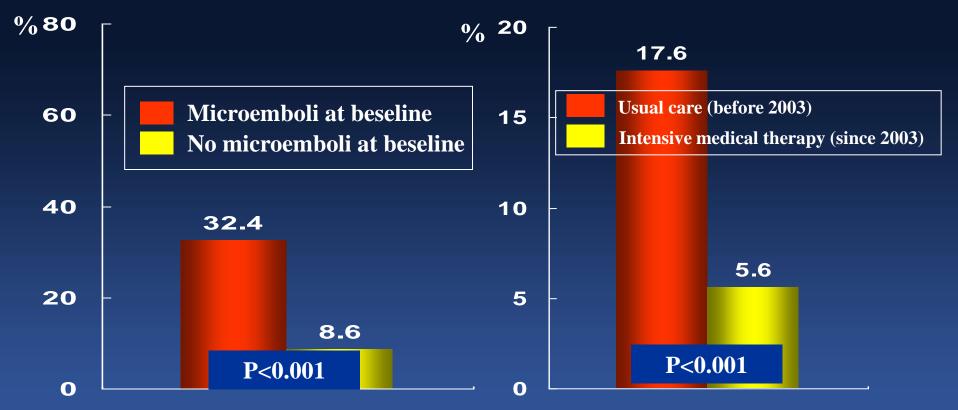
Arch Neurol. 2010;67(2):180-186

OMT with Events

Clinical outcomes

Usual care (before 2003) Intensive medical therapy (since 2003)

Primary endpoint: stroke, death, MI, or carotid endarterectomy upon symptom development.


edical Center

CardioVascular Research Foundation

Arch Neurol. 2010;67(2):180-186

OMT with Events Clinical outcomes for 2 years

Primary endpoint: stroke, death, MI, or carotid endarterectomy upon symptom development.

Less than 5% of Asymptomatic Carotid Stenosis patients can benefit from revascularization
Only those with microemboli should be considered for endarterectomy or stenting

Arch Neurol. 2010;67(2):180-186

Asymptomatic Carotid Artery Stenosis: who is risky?

Identifying Which Patients With Asymptomatic Carotid Stenosis Could Benefit From Intervention

Kosmas I. Paraskevas, MD; J. David Spence, MD, FRCPC; Frank J. Veith, MD; Andrew N. Nicolaides, MD, FRCS, PhD (Hon)

interventions. Performing CEA or carotid artery stenting on those with >80% stenosis as currently practiced in many centers ignores the fact that many strokes occur in patients with moderate stenosis, which may be identified by the presence of TCD embolic signals or unstable plaques using ultrasound. Thus, the approach of selective intervention will lead to a refinement of the current indications for CEA and would also reduce costs spent on unnecessary or even harmful procedures.

Stroke. 2014;45:3720-3724

Identifying Which Patients With Asymptomatic Carotid Stenosis Could Benefit From Intervention

Kosmas I. Paraskevas, MD; J. David Spence, MD, FRCPC; Frank J. Veith, MD; Andrew N. Nicolaides, MD, FRCS, PhD (Hon)

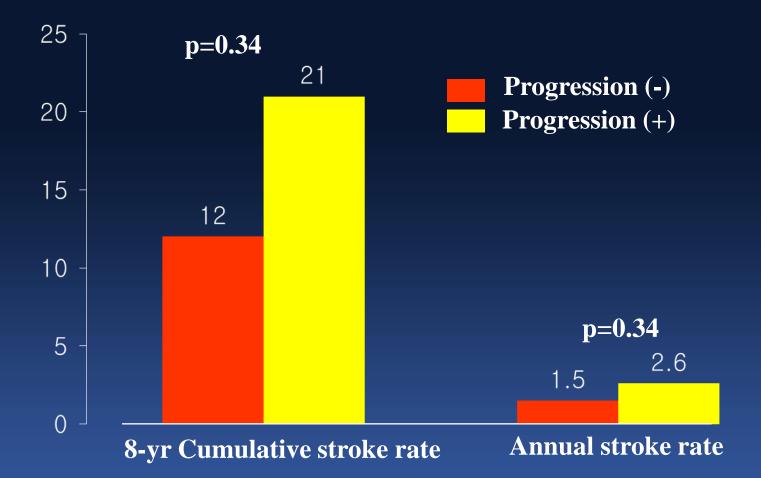
patients with ACS may go on to have a stroke. It is therefore important to identify specific subgroups of ACS patients who despite MT are still at increased risk (>2%/y) and may require a carotid intervention. Identification of these high-risk ACS patients is crucial to target carotid revascularization procedures appropriately and to avoid excessive use of unnecessary

Stroke. 2014;45:3720-3724

Plague change: incidence of regression, progression and occlusion in relation to baseline stenosis class (8 yrs FU)

Stenosis class	Regression, No. (%)	No change, No. (%)	Progression, No. (%)	Occlusion, No. (%)	Total, No. (%)
50%-59%	0	61 (66)	30 (33)	1(1.1)	92 (100)
60%-69%	3 (3.1)	59 (61)	34 (35)	1 (1.0)	97 (100)
70%-79%	9 (2.8)	262 (81)	50 (15)	1 (0.3)	322 (100)
80%-89%	16 (4.7)	252 (78)	45 (14)	8 (2.5)	321 (100)
90%-95%	15 (5.4)	214 (76)	31 (11)	20 (7.1)	280 (100)
95%-99%	0	8 (89)	0	1 (11)	9 (100)
Total	43 (3.8)	856 (76)	190 (17)	32 (2.9)	1121 (100)
χ^2 : $P =$.031		<.001	<.001	C TELEVISION NET TOTAL
	3.8%	76%	17%	2.9%	

Kakkos SK et al. J Vasc Surg 2014;59:956-67

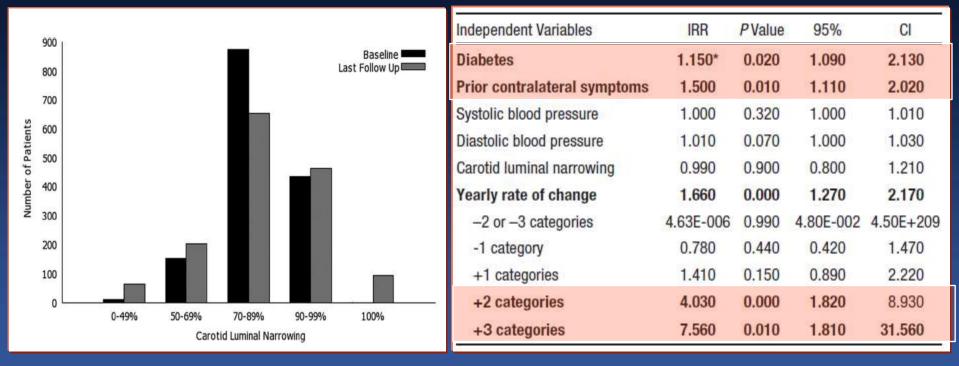

incidence of ipsilateral cerebral or retinal ischemic (CORI) events in relation to changes in severity of stenosis (8 yrs FU)

Stenosis change	No events, No. (%)	Amaurosis fugax, No. (%)	TIA, No. (%)	Stroke, No. (%)	Total, No. (%)	All events, No. (%)
Regression	43 (100)	0	0	0	43 (100)	0
No change	768 (90)	16 (1.9)	32 (3.7)	40 (4.7)	856 (100)	88 (10)
Progression	180 (81)	6 (2.7)	17 (7.7)	19 (8.6)	222 (100)	42 (19)
Total	991 (88)	22 (2.0)	49 (4.4)	59 (5.3)	1121 (100)	130 (12)
RR	-	1.52	2.15	1.92	-	1.93
95% CI	-	0.60-3.84	1.22-3.80	1.14-3.25	-	1.38-2.71

Younger age, high grades of stenosis, absence of discrete white areas in the plaque, and taking lipid lowering therapy were independent baseline predictors of increased incidence of regression.

High serum creatinine, male gender, not taking lipid lowering therapy, low grades of stenosis, and increased plaque area were independent baseline predictors of progression. Kakkos SK et al. J Vasc Surg 2014;59:956-67

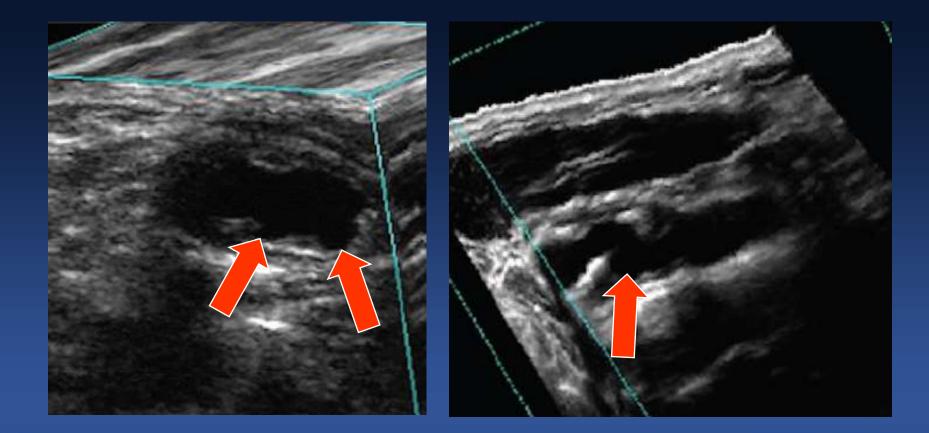
70-99% stenosis, stroke rate for 8 yrs


Only 9 (30%) of 30 strokes occurred in progression group

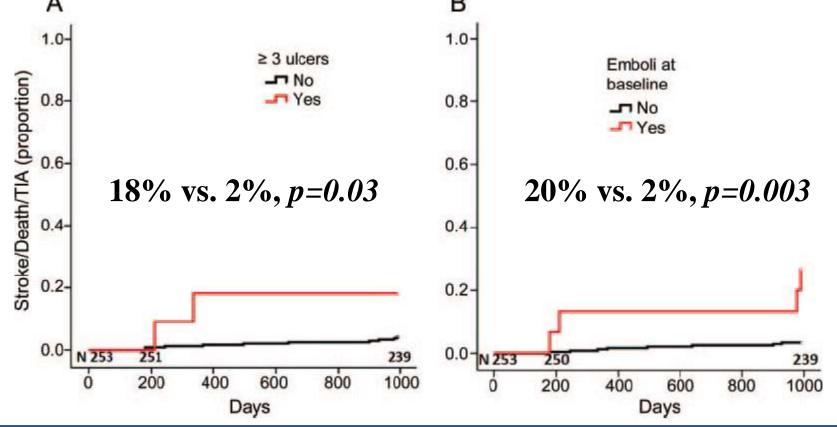
Kakkos SK et al. J Vasc Surg 2014;59:956-67

Annual Progression Rate and Ipsilateral Neurological Events in Asymptomatic Carotid Stenosis

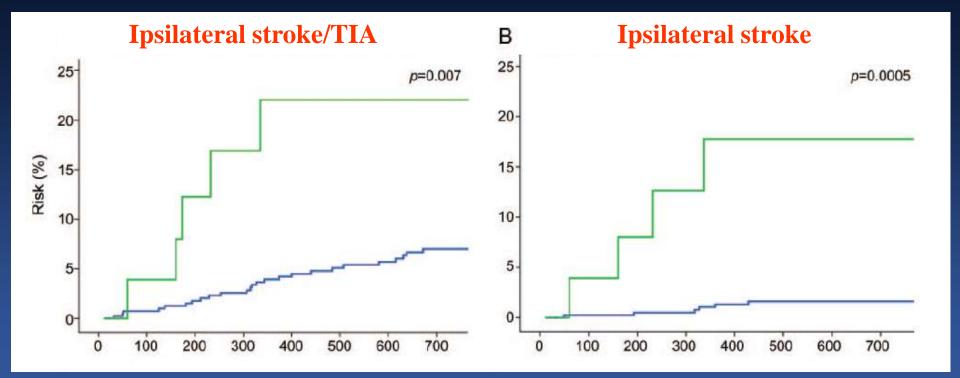
Carotid stenosis category distribution at baseline and last follow-up


Independent predictor for events

Hirt LS et al Stroke. 2014;45:702-706


Carotid plaque images obtained with 3D ultrasound and analyzed on 3D Quantify software

Mandani A, et al. Neurology. 2011 ;77:744-50

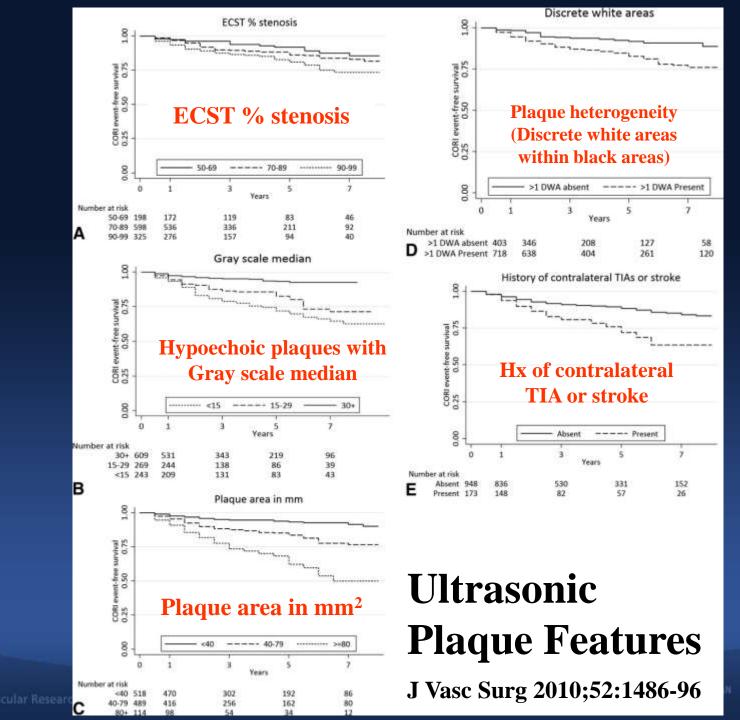

Stroke/Death/TIA a/t 3 ulcers/microemboli Carotid stenosis >60% by Doppler ultrasound ≥ 3 ulcers Emboli at baseline A B

Mandani A, et al. Neurology. 2011 ;77:744-50

Ultrasonic Plaque Echolucency & Emboli Signals

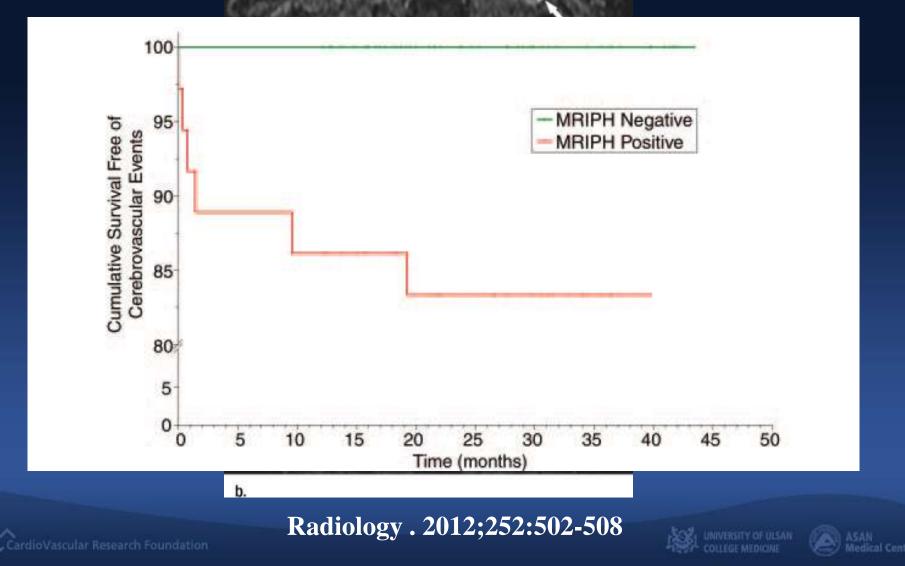
Carotid stenosis >60% by Doppler ultrasound

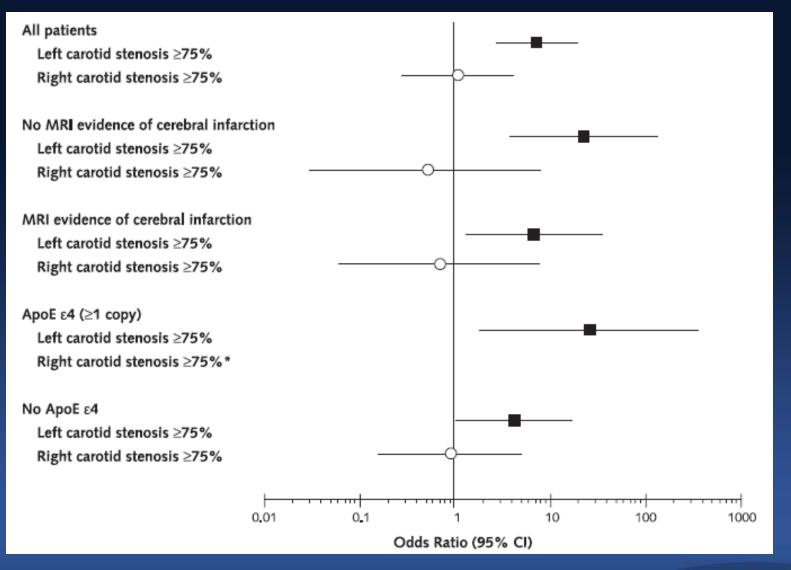
Topakian R, et al. Neurology. 2011;77:751-8


Asymptomatic carotid stenosis and risk of stroke

	HR	95% CI	p value
lipid-rich necrotic core	7.21	1.12-46.28	0.037
Sonographic progression of stenosis	7.00	1.13-41.34	0.036
History of stroke	11.03	1.23-99.36	0.032
Volume of clinically asymptomatic ischemic brain lesions	1.14	1.03-1.25	0.008

Mono ML et al. Cerebrovasc Dis. 2012;34:343-50





MR Imaging – Intraplaque Hemorrhage

Cognitive impair/decline a/w severe (>75%) stenosis

Ann Intern Med 2004;140:237-47

Neurocognitive and Neurologic Function at Baseline and 3 Months After stenting Chronic internal carotid occlusion (n=20)

	Successful Group (n=12)			Unsuccessful Group (n=7)			
	Baseline	3 mo After Procedure	P Value	Baseline	3 mo After Procedure	P Value	
ADAS score	7.7±8.9	5.7±7.1	0.024	8.7±9.7	9.7±11.1	0.268	
MMSE score	25.8±3.8	27.7±2.7	0.015	24.7±5.6	25.7±4.9	0.422	
Color Trail Making A, seconds	123.2±68.6	99.3±51.5	0.017	141.3±101.0	138.3±103.7	0.799	
Color Trial Making B, seconds	196.2±99.3	175.1±85.5	0.169	176.8±82.1	182.0±92.3	0.397	
Verbal fluency	26.3±14.0	27.3±10.2	0.937	27.5±9.4	25.3±6.5	1.0	
NIHSS score	0.6±0.9	0.4±0.7	0.157	0.6±0.8	0.6±0.8		
Barthel Index	97.5±8.7	98.8±4.3	0.317	95.7±7.3	97.1±3.9	0.317	

Stroke. 2011;42:2850-4

Executive & memory function after carotid stenting

Unilateral asymptomatic ICA > 60 % stenosis (N=20)

Set shifting

-TMTest Part B: -0.75 ± 1.43 vs. -1.2 ± 1.48 , p = 0.003

Executive & memory function improved after stenting even in patients with ACS and normal executive and memory function

working memory

-Digit span backward: -0.41 \pm 0.61 vs.-0.58 \pm 0.76, p = 0.052

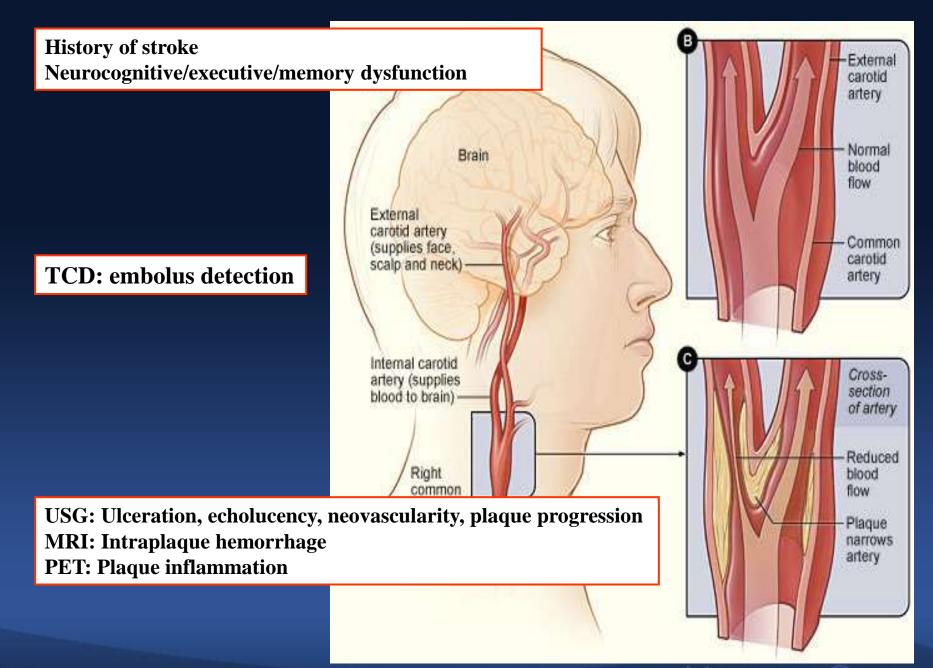
Both verbal and visual memory -Rey Auditory Verbal Learning Test: 0.35 ± 1.04 vs.-0.22 ±0.82, p = 0.011 -Delayed ROC Figure: 0.27 ± 1.26 vs. -0.22 ± 1.01, p = 0.024

J Neurosurg 2012;116:179-84

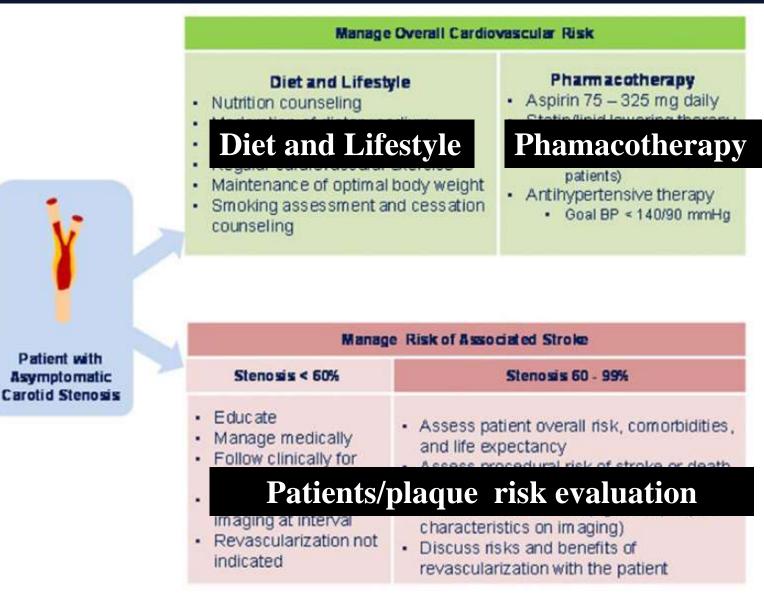
Identifying high-risk ACS

Imaging factor

- Ultrasonographic progression
- TCD: embolus detection
- Ultrasound : echolucency and neovascularity
- 3D-ultrasound: ulceration
- MRI: intraplaque hemorrhage
- PET: plaque inflammation/cerebral blood flow reserve


Clinical factor

- History of stroke
- Neurocognitive/executive/memory dysfunction



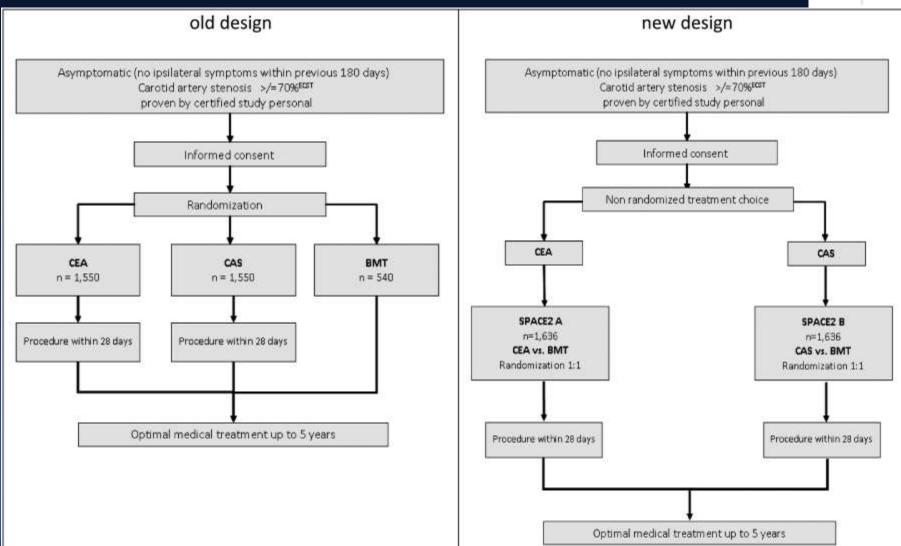
CardioVascular Research Foundation

Management of ACS

Asymptomatic carotid stenosis: Think differently

• Overall annual risk of stroke was about 1% in more recent studies of medically managed asymptomatic carotid stenosis .

• Most patients with ACS (~ 95%) would be better off with intensive medical therapy than with intervention.


• Management should be primarily aimed at reducing the *overall risk of adverse cardiovascular events* in patient with ACS rather than on management of the stenosis itself.

 This management strategy should include lifestyle interventions, optimized multi-agent pharmacotherapy, and intervention in carefully selected individuals.

SPACE-2 Design

CardioVascular Research Foundation

International Journal of Stroke, Volume 9, Issue 3, pages E12–E13, April 2014

Carotid artery revascularization: indication

Symptomatic \geq 50% Asymptomatic \geq 80% (by ESCT, \geq 70% by NASCET)

Asymptomatic: 60-80% needing future stroke risk stratification

Thank you for your attention

