Annual Conference for Cardiovascular Nurse & Technologist Joint Program with TCTAP 2016

OCT-Guided Device Sizing and PCI Optimization

Joon Won Kang, RT Cardiovascular Center, Anam Hospital Korea University Medical Center

Recommendations/Evidence ESC Guidelines Myocardial Revascularization, 2014

Recommendations	Class ^a	Level⁵	Ref. ^c	
IVUS in selected patients to optimize stent implantation.	lla	В	702,703,706	Should be considered
IVUS to assess severity and optimize treatment of unprotected left main lesions.	Ila	в	705	<i>Stent implant Left main Stent failure</i>
IVUS or OCT to assess mechanisms of stent failure.	lla	e		Should be considered
OCT in selected patients to optimize stent implantation.	ПР	С		May be considered

Pre-Intervention Can you visualize the EEL?

T

Plaque burden

Vessel size

Remodeling

Large Diameter

EEL

Scanning Laser Source Optical Power 22.6 mW max 1305 nm ±55 nm

EEL: External Elastic Lamina

Can you visualize the EEL? The EEL signifies a "normal" part of the artery

Tissue differentiation

Lumen morphology

Culprit lesion

How to determine the Landing Zone: OCT

Maximum diameter of the smaller reference

Average of the maximum diameters of the P and D references Maximum diameter of the largest reference

Mid-wall to mid-wall diameters (between lumen and media)

Media-to-media diameter

EuroIntervention

Long-term invasive follow-up of the everolimus-eluting bioresorbable vascular scaffold: five-year results of multiple invasive imaging modalities

MLA : IVUS ≠ OCT

Table 2. Quantitative	coronary	angiography.
-----------------------	----------	--------------

Quantitative coronary angiography	Before procedure	After procedure	6 months	2 years	5 years	<i>p</i> -value after procedure vs. 5 years	<i>p</i> -value 6 months vs. 5 years	<i>p</i> -value 2 years vs. 5 years
N	8	8	8	7	8			
Reference vessel diameter (mm)	3.02 (±0.56)	3.04 (±0.20)	2.93 (±0.21)	2.78 (±0.08)	2.83 (±0.30)	0.02	0.67	0.74
In-scaffold minimum luminal diameter (mm)	1.06 (±0.30)	2.36 (±0.30)	2.10 (±0.31)	1.95 (±0.37)	2.14 (±0.38)	0.09	0.67	0.09
In-scaffold diameter stenosis (%)	64.56 (±10.66)	22.33 (±6.68)	28.19 (±10.99)	29.93 (±13.26)	24.67 (±9.77)	0.21	0.50	0.07
In-scaffold late loss (mm)	_	_	0.26 (±0.25)	0.39 (±0.31)	0.22 (±0.34)	_	0.67	0.09

EuroIntervention 2016;11:996-1003

- OPUS-CLASS Study -

(Phantom vs OCT vs IVUS)

POST Balloon

Landing Zone: IVUS OCT

Boston Scientific: 60MHz

Volcano Focused Acoustic Computed Tomography

Malapposition?

InfraReDx: 50MHz

Absorb 3.0 x 28mm Post 3.5 x 15 NC

Malapposition

Associated stent underexpansion

Not Associated stent underexpansion

Edge Dissection

- 1)>50°
 2) length
 3) Flow limiting (TIMI)
- 4) Inadequate MLA

Tissue Protusion

Major

Effective MLA <5.5mm²

Protrusion Area/Stent Area \geq 10%

Minor

Effective $MLA > 5.5 mm^2$

Lumen Area; 6.30 mm² Protrusion Area/Stent Area < 10%

CLI-OPCI study

The <u>Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous</u> <u>Coronary Intervention Study</u>)

OCT guidance **VS Angio** guidance

	ANGIO (N = 335)	OCT (N = 335)	P value
Events at 1-year follow-up			
Death	23 (6.9%)	11 (3.3%)	0.035
Cardiac death	15 (4.5%)	4 (1.2%)	ST. ⁰ MACE
Myocardial infarction	cantly lowers t	the risk $10^{\circ}(5.4^{\circ})$	0.096
OCT-guided PCI signi	11 (3.3%)	11 (3.3%)	1.0
Definite stent thrombosis	2 (0.6%)	1 (0.3%)	0.624
Cardiac death or MI	43 (13.0%)	22 (6.6%)	0.006
Cardiac death, MI, or repeat revascularization	50 (15.1%)	32 (9.6%)	0.034

Observational Study of Optical Coherence Tomography (OCT) in Patients Undergoing Fractional Flow Reserve (FFR) and Percutaneous Coronary Intervention

FFR and OCT pre and post PCI prospective

418 pts, Clinical FU at 30 days, 1 year

ADAPT-DES Study

Assessment of Dual AntiPlatelet Therapy with Drug-Eluting Stents

IVUS vs No IVUS

8,582 pts, Successful and uncomplicated 2,179 pts Clinical FU at 30 days, 1 year, 2year

ILUMIEN II

Cumulative Percentage (%)

Observational Study of Optical Coherence Tomography (OCT) in Patients Undergoing Fractional Flow Reserve (FFR) and Percutaneous Coronary Intervention

ILUMIEN III

Observational Study of Optical Coherence Tomography (OCT) in Patients Undergoing Fractional Flow Reserve (FFR) and Percutaneous Coronary Intervention

OCT-Guided Device Sizing

Can the EEL be identified at both P and D reference segments

🔰 No

Reference stent diameter decided by OCT measurement of smallest mean **EEL to EEL diameter** at reference site

Reference stent diameter decided by OCT automation based on smallest mean lumen diameter at reference site

PCI Optimization

Tarc Due to OCT high resolution, we see detail structures

Yes

Annual Conference for Cardiovascular Nurse & Technologist Joint Program with TCTAP 2016

Thank you for your time!

