A new classification system for femoropopliteal artery patterns of restenosis: introduction and application

Lawrence A. Garcia, MD St. Elizabeth's Medical Center Boston, MA, USA

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship Company

- Grant/Research Support
- Consulting (non-compensated)
- Major Stock Shareholder/Equity

- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

- Abbott, Covidien/Medtronic
- Covidien/Medtronic, Boston Scientific, Abbott
- Arsenal, Primacea, TissueGen, CV Ingenuity, Spirox, Scion Cardiovascular, Syntervention, Essential Medical
- None
- None
- None
- None

The Challenge of Femoropopliteal Artery Disease

- Peripheral Artery Disease (PAD) affects up to 200 million people worldwide¹ and prevalence of PAD is increasing with an aging population and increasing prevalence of diabetes²⁻³ and increasingly more endovascular therapy
- No single endovascular therapy has emerged as a "gold standard"
- Multiple factors influence operator selection of device treatment to include morphology, lesion length, calcification
- All devices have primary patency, CD-TLR rates that on average seem similar from device to device
- However, to date we still do not understand the failure mode and restenotic pattern on any one device
- Therefore, characterizing "the restenotic pattern" remains a critical component in advancing PAD standard of care and device specific treatment choices and may impact healthcare economics
- 1. Fowkes FGR, et al. Lancet 2013;382:1329-40.
- 2. Dua A, Lee CJ. Tech Vasc Interv Rad 2016;19:91-5.
- 3. Criqui MH, Aboyans V. Circ Res 2015;116:1509-26.

Motivation

- Benefits of existing scoring systems
 - Mehran, et al., developed a pragmatic and easily-applied system for stentbased restenosis classification1
 - Tosaka, et al., applied a similar system to the periphery2
 - Both systems have demonstrated associations of restenosis type or class to outcomes
- Limitations of existing scoring systems
 - Limited to in-stent restenosis (ISR) classification, thus not applicable to PTA-,
 DCB- and Atherectomy-based approaches
 - May lack descriptive value in long, complex femoropopliteal artery (FPA) lesions commonly confronting operators
- We have developed a scoring system agnostic to treatment modality and applicable by both operators and core labs

- 1. Mehran R, et al. Circ 1999;100:1872-8.
- 2. Tosaka A, et al. J Am Coll Cardiol 2012;59:16-23.

Multidisciplinary Team

Oversight and Steering Board

- Lawrence Garcia, MD Interventional Cardiologist
 St. Elizabeth's Medical Center, Boston, MA, USA
- Krishna Rocha-Singh, MD, Interventional Cardiologist
 St. John's Hospital, Springfield, IL, USA
- Prakash Krishnan, MD, Interventional Cardiologist Mt. Sinai Medical Center, New York, NY, USA
- Thomas Zeller, MD, Angiologist
 Universitäts-Herzzentrum Freiburg-Bad
 Krozingen, Bad Krozingen, Germany

- Gunnar Tepe, MD, Angiologist
 RoMed Klinikum, Rosenheim, Germany
- Mark Fleming, MD, Vascular Surgeon Mayo Clinic, Rochester, MN, USA
- Juan Granada, MD, Interventional Cardiologist CRF-Skirball Center for Innovation, Orangeburg, NY, USA
- Michael Jaff, DO, Vascular Medicine
 Newton-Wellesley Hospital, Newton, MA, USA

Industry Representatives (Medtronic)

Mark Turco, MD

- Chris Tieché, PhD

• Lynn Oster, RN

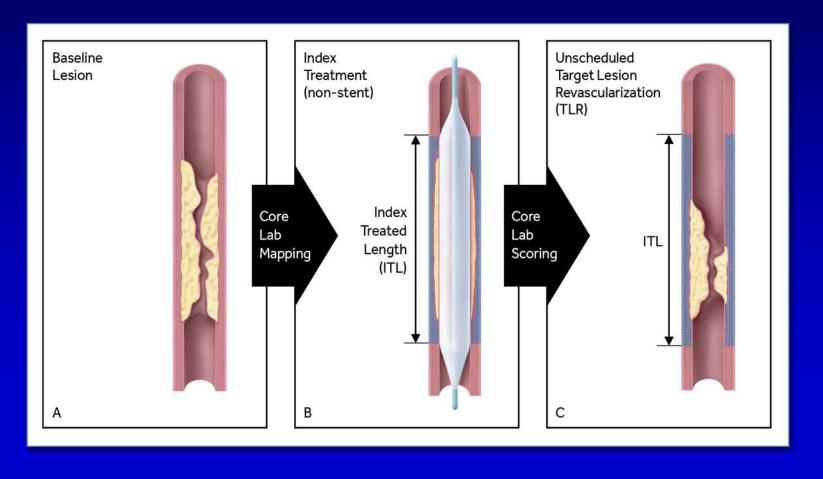
• Simona Zannetti,MD

Core Labs

SynvaCor, Springfield, IL, USA USA

• Beth Israel Deaconess Medical Center, Boston, MA,

- 1. Mehran R, et al. Circ 1999;100:1872-8.
- 2. Tosaka A, et al. J Am Coll Cardiol 2012;59:16-23.

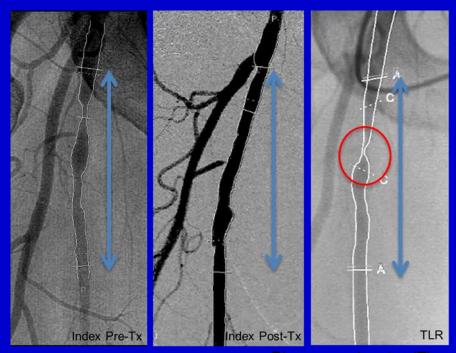

Methods: Study Scope

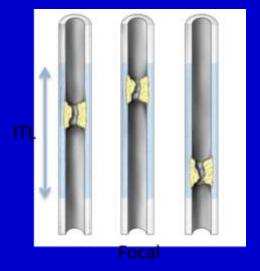
- Inclusion Criteria
 - Medtronic Peripheral trials and registries
 - First TLRs ≤12mo of index procedure
- **Exclusion Criteria**
 - **Unevaluable or absent angiographic studies**
 - **Below-knee TLRs (as part of DEFINITIVE LE)**

			Target Lesion
Study	Treatment Cohort	Total Subjects	Revascularizations
IN.PACT SFA	PTA	111	22
IN.PACT SFA	DCB	220	6
IN.PACT Global - Interim Analysis	DCB	655	54
DEFINITIVE LE - Above-knee	Atherectomy	655	139
DEFINITIVE AR	Atherectomy+DCB	121	22
DURABILITY II	BMS	287	33
Complete SE SFA	BMS	196	18
IN.PACT Global ISR - Baseline ISR	BMS	131	169
IN.PACT Global ISR - DCB treatment	BMS+DCB		23
		2376	486

Methods: Index Treated Length

The index treated length (ITL) for non-stent cases, was determined by the angiographic core lab




Type 1: Focal lesions <20% ITL

Edge proximal <2cm of proximal ITL

margin

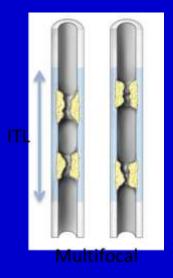
Edge distal <2cm of distal ITL margin

Blue arrow denotes ITL

Type 1: Focal lesions <20% ITL

Edge proximal <2cm of proximal ITL margin

Edge distal <2cm of distal ITL margin


Type 2: Multifocal lesions

Multiple lesions combining to <50% ITL but with ≥3cm separation

Edge bilateral within 2cm of both ITL margins

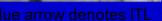
Type 1: Focal lesions <20% ITL

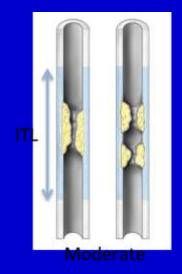
Edge proximal <2cm of proximal ITL margin

Edge distal <2cm of distal ITL margin

Type 2: Multifocal lesions

Multiple lesions combining to <50% ITL but with ≥3cm separation


Edge bilateral within 2cm of both ITL margins


Type 3: Moderate lesions

Lesions ≥20% but <50% of the ITL

Multiple lesions with <3cm separation

Type 1: Focal lesions <20% ITL

Edge proximal <2cm of proximal ITL margin

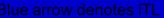
Edge distal <2cm of distal ITL margin

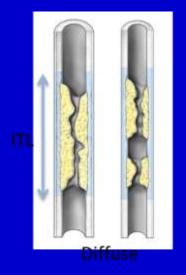
Type 2: Multifocal lesions

Multiple lesions combining to <50% ITL but with ≥3cm separation

Edge bilateral within 2cm of both ITL margins

Type 3: Moderate lesions


Lesions $\geq 20\%$ but $\leq 50\%$ of the ITL


Multiple lesions with <3cm separation

Type 4: Diffuse lesions

Lesions ≥50% ITL regardless of separation

Type 1: Focal lesions <20% ITL

Edge proximal <2cm of proximal ITL margin

Edge distal <2cm of distal ITL margin

Type 2: Multifocal lesions

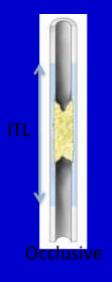
Multiple lesions combining to <50% ITL but with ≥3cm separation

Edge bilateral within 2cm of both ITL margins

Type 3: Moderate lesions

Lesions $\geq 20\%$ but $\leq 50\%$ of the ITL

Multiple lesions with <3cm separation


Type 4: Diffuse lesions

Lesions ≥50% ITL regardless of separation

Type 5: Occlusive lesions

Type 1: Focal lesions <20% ITL

Edge proximal <2cm of proximal ITL margin

Edge distal <2cm of distal ITL margin

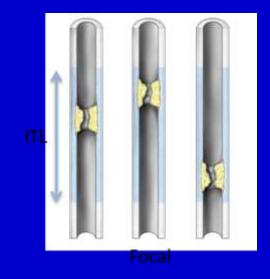
Type 2: Multifocal lesions

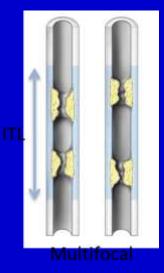
Multiple lesions combining to <50%

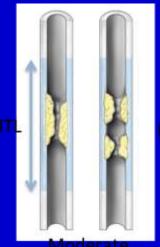
ITL but with ≥3cm separation

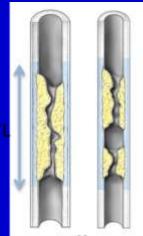
Edge bilateral within 2cm of both ITL margins

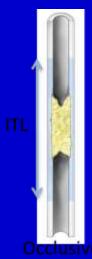
Type 3: Moderate lesions

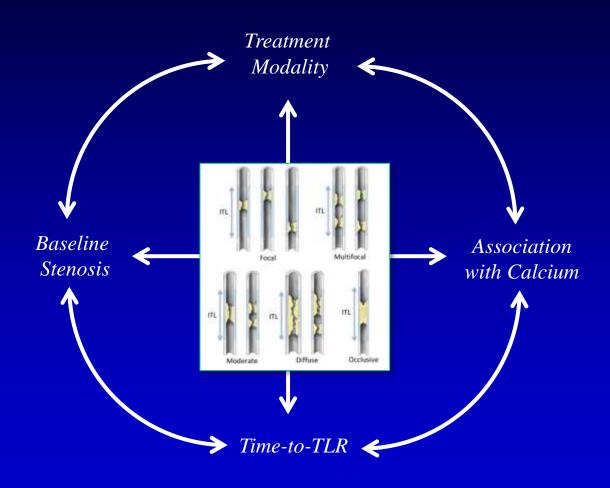

Lesions $\geq 20\%$ but $\leq 50\%$ of the ITL


Multiple lesions with <3cm separation


Type 4: Diffuse lesions

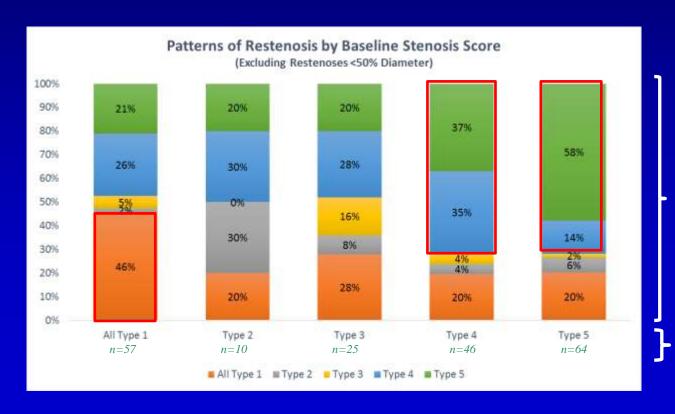

Lesions ≥50% ITL regardless of separation


Type 5: Occlusive lesions



ITL = Index treated length.

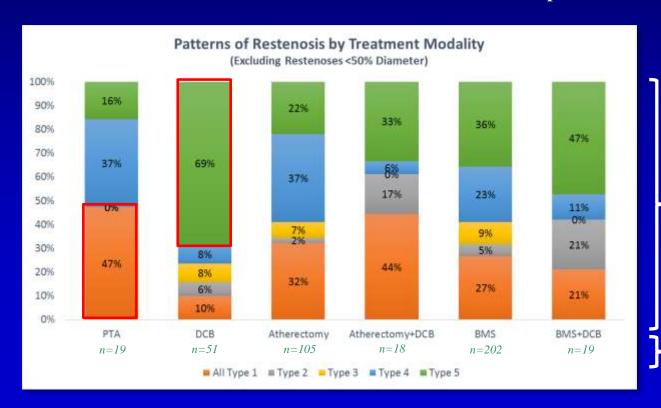
Limitations


- Only MDT devices evaluated
 - Atherectomy cases were only directional atherectomy (SilverHawk & TurboHawk)
 - DCB cases were only IN.PACT Admiral
 - No peripheral stent-grafts
 - No peripheral drug-eluting stents
- Only complete / high-quality imaging studies were evaluable
- Procedural and technical variables, such as catheter placement and remote device complications, are not part of the analysis

Analytical Plans

Baseline Stenosis Preliminary Analysis

- 202 TLRs analyzed of the 410 cases available with baseline imaging
 - 410 total less 145 unevaluable and 63 disqualified as BTK lesions or restenoses <50%</p>
- Focal lesions exhibited tendency to fail in a focal restenosis pattern
- Diffuse and occlusive lesions tended to fail in diffuse and occlusive patterns

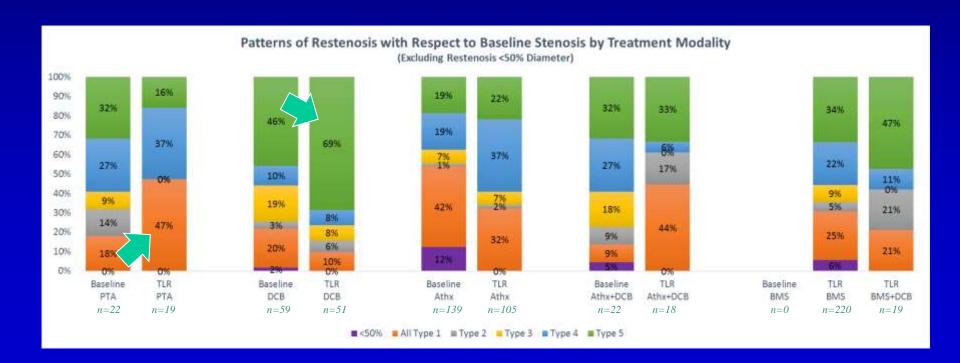


Restenosis Pattern at TLR

Baseline Pattern

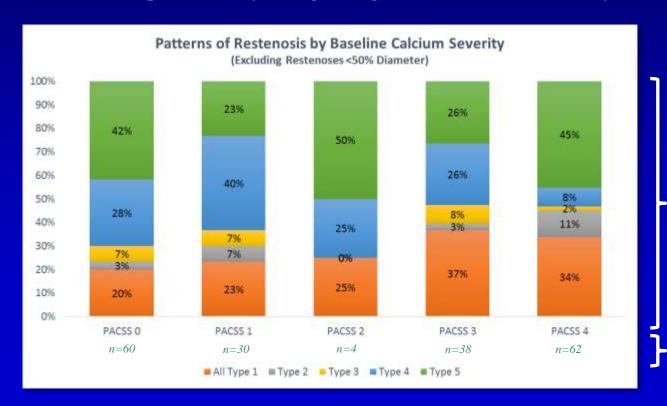
Treatment Modality Preliminary Analysis

- 414 TLRs analyzed
 - 486 total less 7 unevaluable and 65 disqualified as BTK lesions or restenoses <50%</p>
- Lesions treated with PTA tended to fail in focal pattern
- Lesions treated with DCB tended to fail in occlusive pattern



Restenosis
Pattern at TLR

Baseline Pattern


Treatment Modality Preliminary Analysis

- Deeper dive of restenosis associated with baseline stenosis by treatment
- Lesions treated with PTA exhibited evenly-distributed baseline stenosis pattern, suggesting focal failure pattern of PTA
- Lesions treated with DCB tended to consist of more occlusions at baseline,
 potentially confounding high rate of occlusive restenosis pattern

Calcium Association Preliminary Analysis

- 194 TLRs analyzed
 - 241 total less 47 disqualified as BTK lesions or restenoses <50%</p>
- No clear trend emerges between calcium severity and restenosis morphology
- Device-specific analysis regarding the effect of calcium may add clarity

Restenosis Pattern at TLR

Baseline Pattern

Summary

- Existing restenosis scoring systems lack descriptive value for nonstent treatments and long, complex FPA lesions
- Proposed system provides all-inclusive nomenclature with more description of failure morphologies
 - These may provide for more information regarding subsequent therapy (ies)
 - Potential determinant for index procedural technology
- The proposed "patterns of restenosis" may unify previous and future device trials regardless of technology
- Initial scoring"patterns" is effective and consistent among all modalities
- Initial review suggests there are differences between modalities in patterns of restenosis.
- Further analysis will become important in describing critical health economics