Current and Next Generation AAA Endografts to Treat Simple to Complex Anatomies

Woong Chol Kang M.D.

Cardiology, Gachon University Gil Medical Center Incheon, Korea

History of EVAR Devices

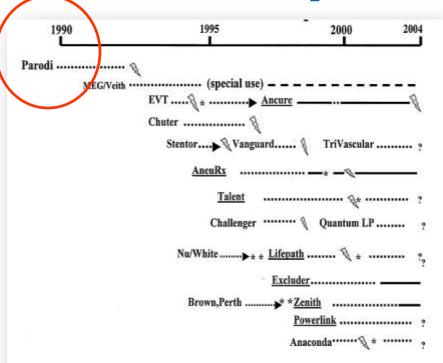
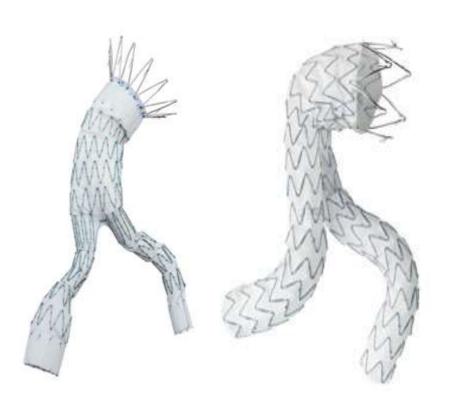
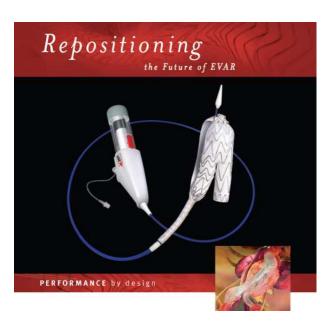


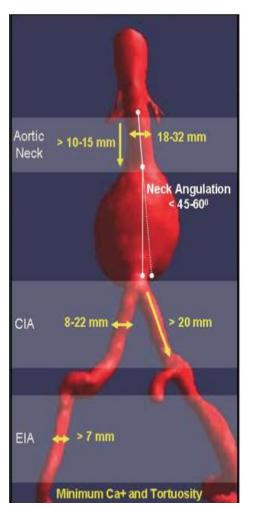
Fig 1. Devices for endovascular AAA repair over time, from Parodi's device to the present. *Dotted line*, Clinical trials; solid line, use approved by the Food and Drug Administration; lightning bolt, major pitfalls (failure modes, FDA warning or device withdrawal). *Design modification


FDA Approval timeline



Available Devices in Korea

Seal S&G


Zenith Flex Cook

Endurant IIs Medtronic

Excluder & C3
Gore

Incraft Cordis

Minimal requirement for standard EVAR

Proximal aortic neck

Neck diameter >17 mm, <32 mm

Angle between the suprarenal aorta and the juxtarenal aorta <60°

Angle between the juxtarenal aorta and the long axis of the aneurysm sac <60-90°

Neck length >10 mm

Neck thrombus covering <50% of the proximal neck circumference

Neck dilated <3 mm within 10 mm of the most caudal renal artery

Focal neck enlargement <3 mm within 15 mm from the most caudal renal artery

Neck calcification <50% of the proximal neck circumference

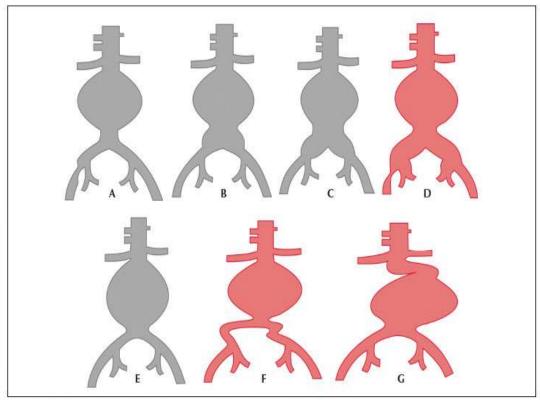
Aortic bifurcation

Aortic bifurcation diameter >20 mm in case of a bifurcated graft

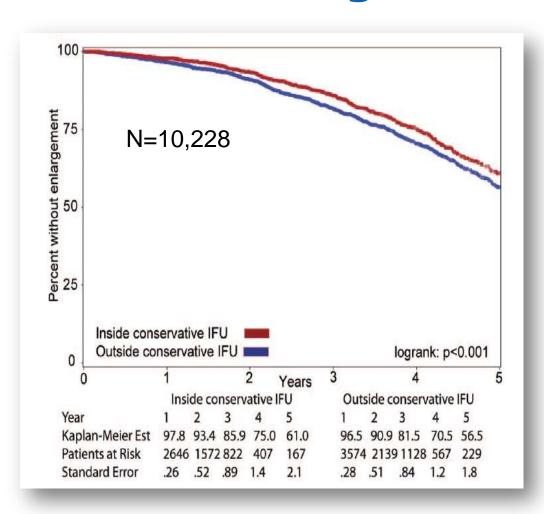
Iliac artery

Iliac luminal diameter >7 mm

Angle between the long axis of the aneurysm and the iliac axis <60°


Iliac calcification: non extensively circumferential

Iliac neck diameter <22 mm


Iliac neck length >15 mm

18-28 mm ≥15 mm ≥25 mm >7.5 mm

Complex AAA

AAA enlargement after **EVAR**

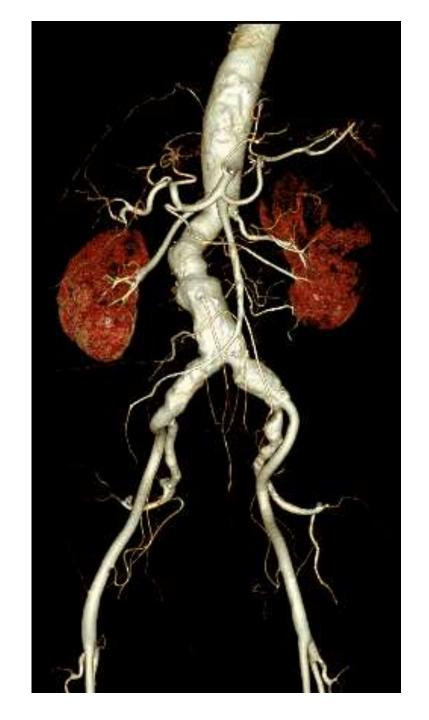
Only 40% of patients had anatomy that met the most conservative definition of device instructions for use; 60% met the most liberal definition of device instructions for use. The 5-year post-EVAR rate of AAA sac enlargement was 41%

Circulation 2011;123:2848

Table 5. Determinants of Aortic Aneurysm Sac Enlargement Identified on Multivariable Cox Proportional Hazards Analysis

Covariates	Hazard Ratio (95% Confidence Interval)	P
Age, y	1-4	
<60	Reference	
60-69	0.80 (0.60-1.05)	0.11
70-79	0.87 (0.67-1.14)	0.31
≥80	1.32 (1.03-1.75)	0.05
Female	0.96 (0.82-1.13)	0.64
AAA diameter		
Maximum AAA diameter ≥55 mm	0,97 (0.86-1.10)	0.62
Aortic neck length, mm		
>15	Reference	
10-15	0.87 (0.71-1.07)	0.19
<10	0.94 (0.77-1.15)	0.53
Aortic neck diameter		
Diameter at lowest renal artery <28 mm	Reference	
Diameter at lowest renal artery 28-32 mm	1.80 (1.44-2.23)	< 0.0001
Diameter at lowest renal artery >32 mm	2.07 (1.46-2.92)	< 0.0001
Conical neck	1.17 (0.97-1.42)	0.10
Aortic neck angle, °		
<45	Reference	
45-60	1.04 (0.90-1.21)	0.58
>60	1.96 (1.63-2.37)	< 0.0001
liac diameter		
Both common iliac arteries ≤20 mm	Reference	
Only 1 common iliac arteries >20 mm	1.46 (1.21–1.76)	< 0.0001
Both common iliac arteries >20 mm	1.31 (0.99-1.74)	0.06
Endoleak during follow-up	2.70 (2.40-3.04)	< 0.0001

M/88 HTN, DM



M/75

AAA: 56mm

Rt. CIA: 34 mm

Lt. CIA: 36 mm

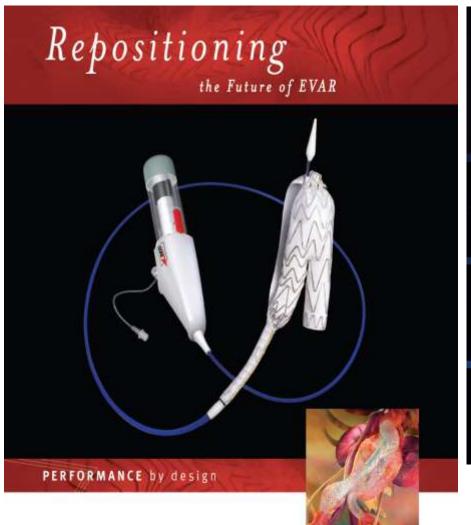
What would you do?

Limitations of Current Devices

Limitations

- Hostile neck
- Inadequate sealing
- Juxta- or suprarenal AAA
- Large device profile
- AAA with Iliac involvement
- Inability of reposition

Required Improvement


- Flexibility and conformability
- Controllable deployment
- Migration resistance
- Low profile
- Long-term durability
- Fenestrated/branched endograft

Current and New generation of endograft with main features

Type od anatomic fixation and devices	Stent - main graft material	Main body delivery sheath (size)	Re-positioning mechanism	Special characteristics/features
Suprarenal fixation	/>	\sim	MI	
Endurant®	Nitinol-polyester	18-20F (OD) ³	No	Low profile, tip capture mechanism
Incraft®	Nitinol-polyester	13 and 15F	Yes	Ultra-low profile, in-situ length adjustment, repositionable, active locking mechanism
Ovation®	Nitinol-PTFE	14-15F	No	Ultra-low profile, inflatable rings for sealing, no radial force
Zenith LP®	Nitinol-polyester	16-17F	No	Low profile, long main body, COOK Medical ARC technology
Infrarenal fixation				
AFX®	Cobalt chromium- STRATA ¹	17F	No	Anatomical fixation at the aortoiliac bifurcation, STRATA material, dual seal mechanism
Anaconda One- Lok®	Nitinol-polyester/ tantalum	20-23F (OD)	Yes	Repositionable, preloaded wire and magnet system
Aptus TM	Nitinol-polyester	16-18F	No	EndoStaples, polyester without stents in the main body
Aorfix®	Nitinol-polyester	22F	No	Coil design, closely aligned nitinol wires in the proximal part, treats neck angles ≥90°
C3-Excluder®	Nitinol-ePTFE	18-20F	Yes	Three-step deployment system, repositionable
Nellix®	Cobalt chromium- PEG- endobags ²	17F	No	EVAS system (balloon-expandable endoframes surrounded by endobag filled with polyethylene glycol)
Supra- and infrarenal fixation				
Treovance®	Nitinol-polyester	18- 1 9F	Yes	Both supra- and infrarenal fixation, Navitel® delivery sheath, repositionable

¹mulitlayer ePTFE, ²balloon -expandable endoframes surrounded by an endobag filled with an in-situ curing polymer, ³outer diameter

Excluder & C3 Delivery System (Gore)

- To be reconstrained the proximal end of the endograft after insertion
- Rotate or move the device up and down to reposition
- Facilitate contralateral gate cannulation and placement of the endograft closer to the lowest renal artery
- Decrease the risk of inadequate sealing and consequent graft migration and endoleaks.

Incraft (Cordis)

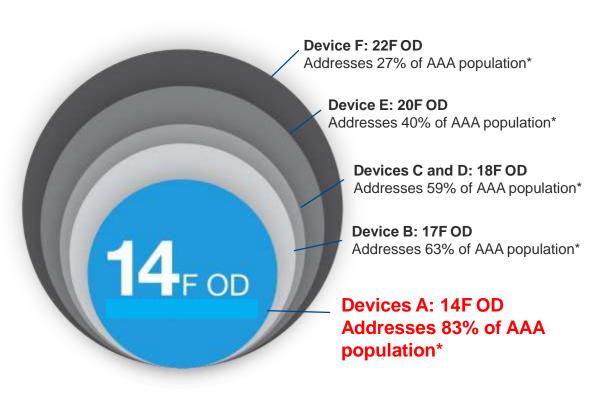
3-PIECE MODULAR SYSTEM:

- Low porosity polyester graft
- Segmented nitinol stents
- Supra-renal fixation

CUSTOMIZATION:

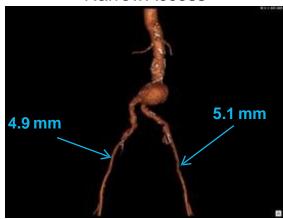
- Bilateral in-situ length adjustment up to 3cm*
- Partial proximal re-positioning
- Few units to fit broad anatomical coverage

Contralateral Side Marker Bifurcate Crania Edge Markers Maximum 49mm marker Minimum overlap marker Contralat eral Lea-37mm 45mm


ULTRA-LOW PROFILE:

- Delivery System-14Fr O.D (22,26,30mm) (16F for 34mm)
- Catheter-like shaft flexibility

In-situ length adjustment zones

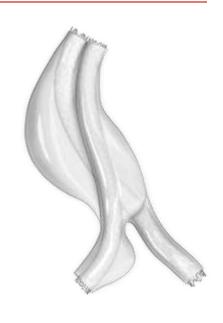

Minimum seal-zones

Low Profile, Expanded Options

* Patient's Access Vessel Size Distribution (Derived from M2S Measurement Database of 43,000 CTScans)

NarrowAccess

Tortuous Anatomy



EVAR devices (Endologix)

EVAR EVAS

AFX® Platform

- Anatomical Fixation
- Preserve bifurcation
- Infra/suprarenal fixation options

OVATION® Platform

- Proximal fixation
- Ultra-low profile
- Polymer sealing ring
- Highly flexible

NELLIX® Platform

- AAA fixation
- Complete aneurysm polymer sealing
- Lowest endoleaks

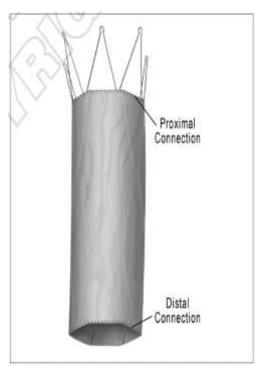


Figure 2.—The graft material is connected to the metal frame of the cuff only at the proximal and distal ends.

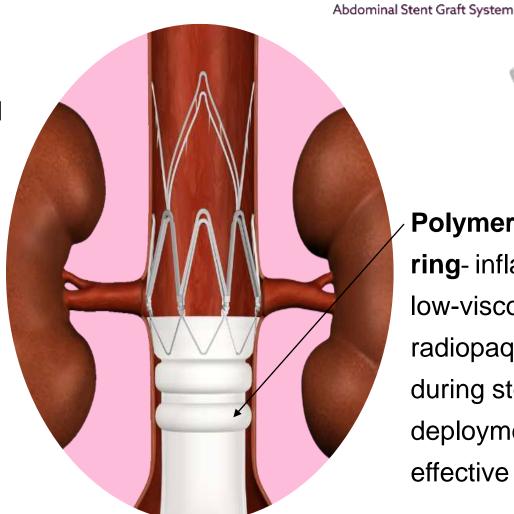
AFX (Endologix)

ActiveSeal™ extends the seal zones

Anatomical fixation

preserves the distal aortic bifurcation enabling "up and over" procedures

Ovation (Trivascular, Endologix)

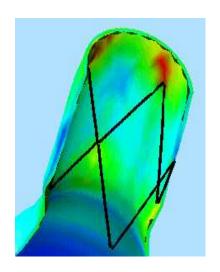

Lowest profile

of any FDA approved

EVAR device (14F)

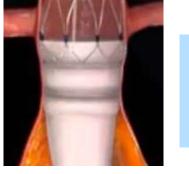
Highly flexible

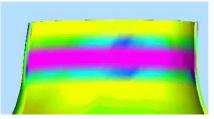
limbs & delivery system



Polymer sealing
ring- inflated with a
low-viscosity
radiopaque polymer
during stent-graft
deployment, provides
effective sealing

Ovation iX™


Sealing Ring Technology Creates Continuous Wall Apposition

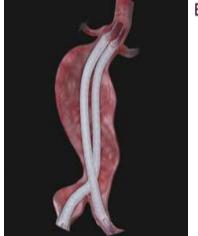

Self Expanding Stent Graft

Wire and fabric grafts create *discontinuous* points of apposition in irregular and/or tapered anatomy

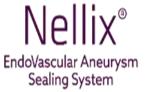
Ovation Stent Graft

Ovation sealing ring creates uniform continuous wall apposition, even in irregular and/or tapered anatomy

Nellix (Endologix)


THE NEW PARADIGM IN AAA THERAPY

Simplified procedure & planning


Complete aneurysm sealing to confidently treat more patients

Lowest overall endoleak rate and reduced secondary interventions

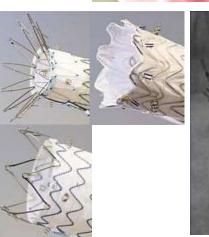
EndoBags are filled with Polymer to seal
the entire aneurysm

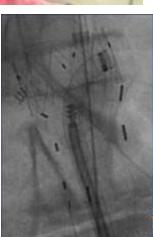
EndoStaples (Aptus, Medtronic)

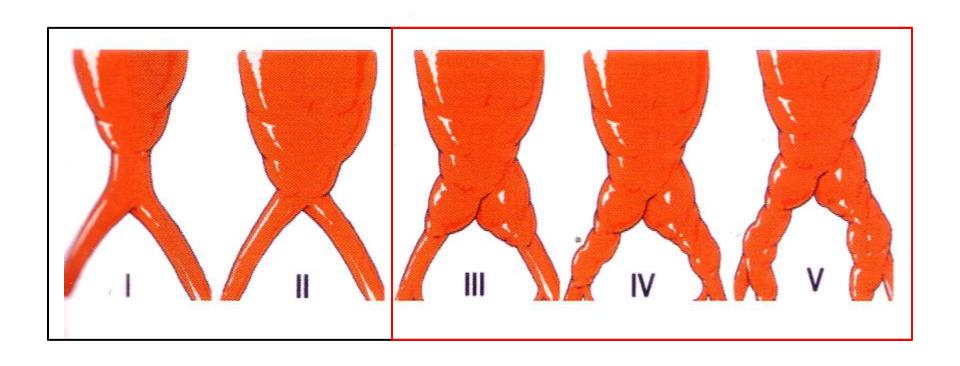
Aptus™ Heli-FX™ EndoAnchor™ System

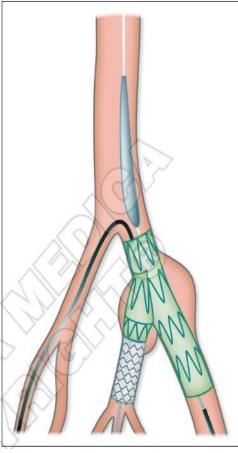
electronically controlled Aptus Applier

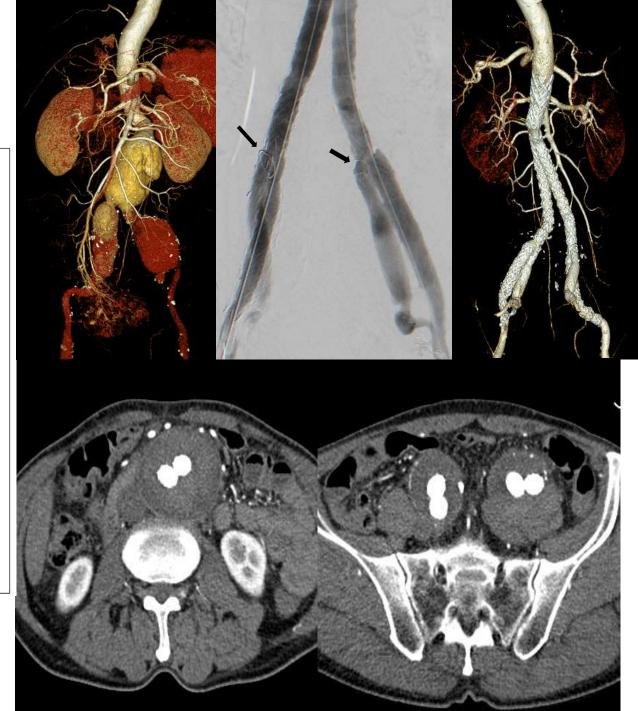
Deflexible 16Fr OD, 62cm working length


Helical screw (3 mm diameter, 4 mm depth)

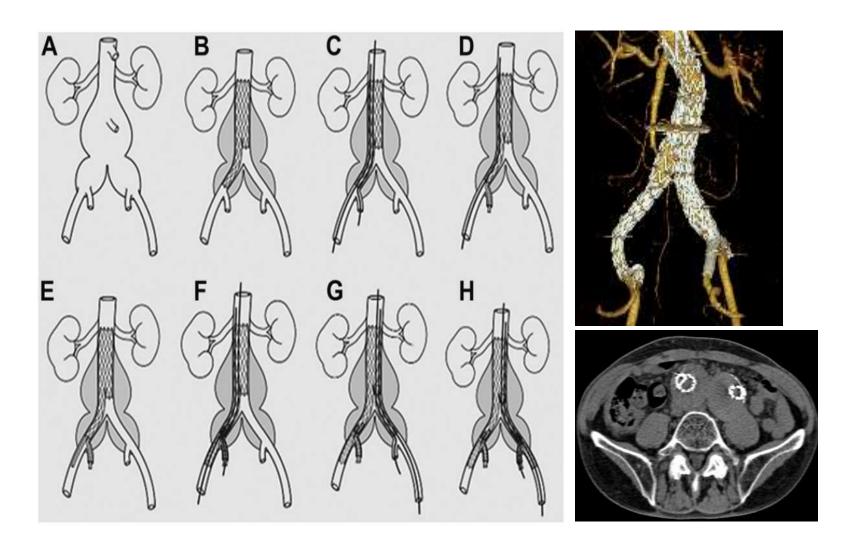


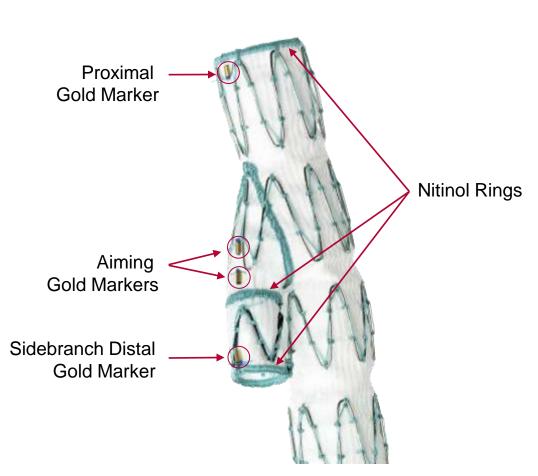

- Prevents migration and limits proximal neck dilation
- Augments proximal seal in challenging anatomy
- Compatible with leading endografts

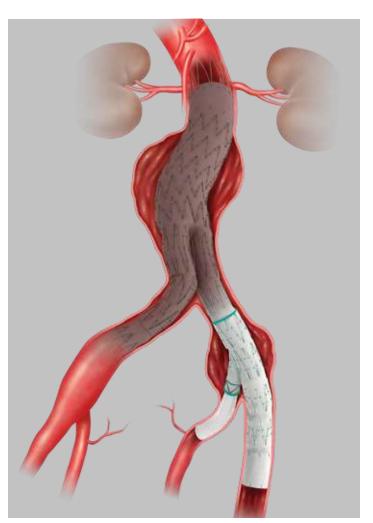




AAA Extend to Iliac Arteries

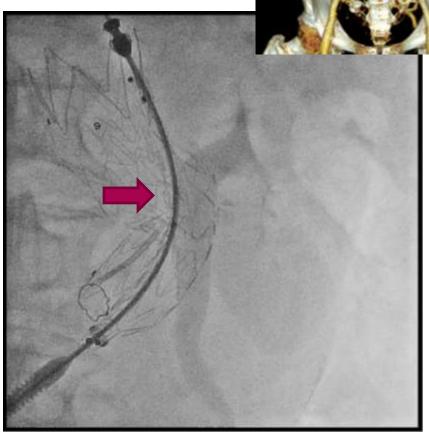

M/73



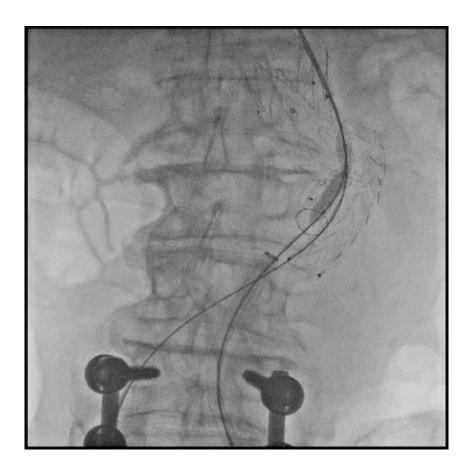


Sandwich technique for involving CIA aneurysm

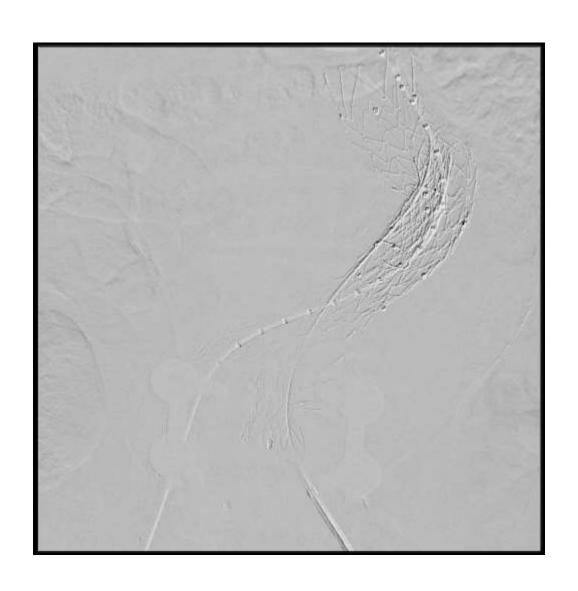

Endovascular repair of aortoiliac aneurysm with IBD (COOK)



What did I do?


Stent-graft

0.035 terumo stiffwire, Lunderquist wire Mustang 8 x 40 mm PTA balloon Palmatz stent (P4014) & Mustang 12 x 60 mm PTA balloon by hand mounting

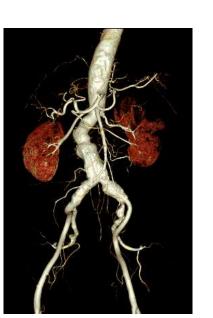

Palmatz stent

0.035 terumo stiffwire, Lunderquist wire Mustang 8 x 40 mm PTA balloon Palmatz stent (P4014) & Mustang 12 x 60 mm PTA balloon by hand mounting

FU angiography

EVAR with Sandwich technique

Endurant SG: 23 x 124 mm


Endurant SG: 16 × 82 mm

Viabhan SG: 8 x 10 mm

Endurant SG: 16×9.3 mm

Endurant SG: 16 x 124 mm

Endurant SG: 10 × 82 mm

postop

3months later

Conclusions

- Next generation devices are transforming to solve unmet clinical need of current devices.
- More flexible devices with lower profile are available.
- New devices may eliminate endoleaks (aneurysm sealing)
- **Branched** or fenestrated endografts may enable EVAR in juxta- and suprarenal AAA or **involving iliac artery**.
- However, efficacy and safety of newer devices needed to be validated in larger clinical trials.

Thank you for your attention!