Does vessel prep still matter in DCB era?

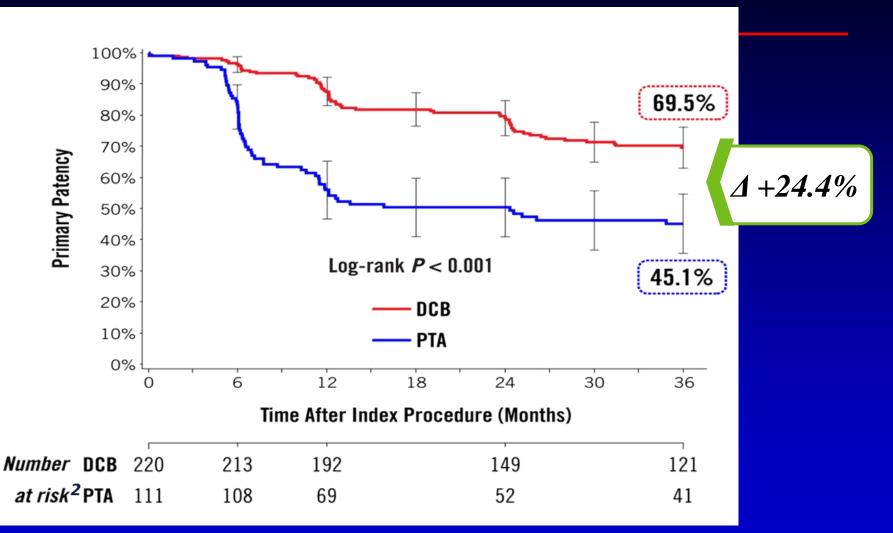
Lawrence A. Garcia, MD *Chief, Section Interventional Cardiology and Vascular Interventions Director, Vascular Medicine St. Elizabeth's Medical Center Tufts University School of Medicine Boston, MA*

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

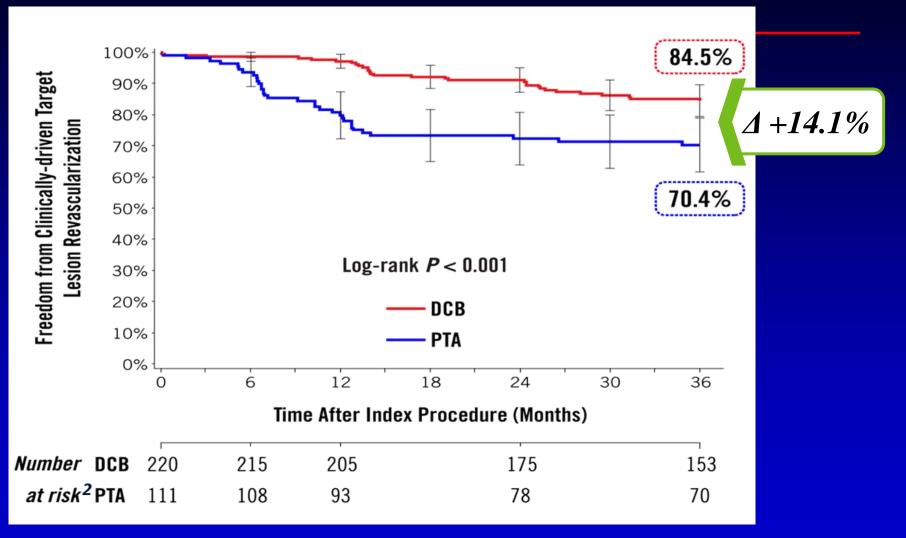
Company


- Grant/Research Support
- Consulting (non-compensated)
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

- Abbott, Covidien/Medtronic
- Covidien/Medtronic, Boston Scientific, Abbott
- Arsenal, Primacea, TissueGen, CV Ingenuity, Spirox, Scion Cardiovascular, Syntervention, Essential Medical
- None
- Innovation Vascular Partners, Consulting
- None
- None

What we need to accept

- The SFA landscape is fluid
 - Stenting predominates
 - Leave nothing behind multiple strategies
 - Vessel prep remains a key question
 - Definition remains elusive
 - » PTA alone
 - » Debulking strategy
- Any RCT is unique
 - The registry is not the RCT
- The RCT is not the registry
 - Registry generally does not have the rigor of the RCT
 - Core lab
 - DSMB/CEC
 - Patient population
- Alternative therapies may or may not still be important for lower extremity "leave nothing behind" strategies


IN.PACT SFA Trial: Primary Patency¹ through 3 Years

1. Freedom from core laboratory-assessed restenosis (duplex ultrasound PSVR ≤2.4) or clinically-driven target lesion revascularization through 36 months (adjudicated by a Clinical Events Committee blinded to the assigned treatment).

2. Number at risk represents the number of evaluable subjects at the beginning of each 30-day window.

IN.PACT SFA Trial: Freedom from CD-TLR¹ through 3 Years

1. Clinically-driven TLR adjudicated by an independent Clinical Events Committee, blinded to the assigned treatment based on any re-intervention at the target lesion due to symptoms or drop of ABI of ≥20% or >0.15 when compared to post-procedure baseline ABI.

2. Number at risk represents the number of evaluable subjects at the beginning of each 30-day window.

IN.PACT Global Study Patient Cohorts

1538 patients enrolled

*ISR is not an approved indication in the US

IN.PACT Global ISR Imaging Cohort: Lesion/Procedural Characteristics

Lesion	N=149
<u>Lesion type:</u> De Novo Non-stented Restenotic In-Stent Restenosis	0.0% (0/149) 0.0% (0/149) 100.0% (149/149)
Lesion Length (cm)	17.17 ± 10.47
Total Occlusions (%)	34.0% (48/141)
Calcification (%) Severe Calcification (%)	59.1% (78/132) 8.3% (11/132)
RVD (mm)	5.222 ± 0.601
Diameter Stenosis (pre-treatment) (%)	84.8 ± 14.9
Dissections (%): 0	69.1% (103/149)
A-C	26.2% (39/149)
D-F	4.7% (7/149)

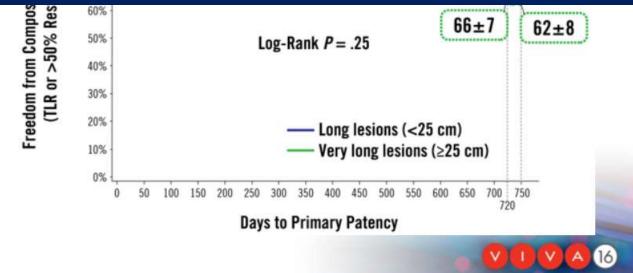
Procedural Characteristics				
Device Success ^[1]	99.6% (282/283)			
Procedure Success ^[2]	99.2% (130/131)			
Clinical Success ^[3]	98.5% (129/131)			
Pre-dilatation	64.1% (84/131)			
Post-dilatation	26.0% (34/131)			
Provisional Stent	14.5% (19/131)			

IN.PACT Global Long Lesion Imaging Cohort: Lesion/Procedural Characteristics

Lesions (N)	164
<u>Lesion Type:</u> de novo restenotic (no ISR) ISR	83.2% (134/161) 16.8% (27/161) 0.0% (0/161)
Lesion Length	26.40 \pm 8.61 cm
Total Occlusions	60.4% (99/164)
Calcification Severe	71.8% (117/163) 19.6% (32/163)
RVD (mm)	4.594 ± 0.819
Diameter Stenosis (pre- treatment)	90.9% ± 14.2
Dissections: 0	37.9% (61/161)
A-C	47.2% (76/161)
D-F	14.9% (24/161)

Schienert, D EuroPCR 2015 presentation

Device Success ^[1]	99.5% (442/444)		
Procedure Success ^[2]	99.4% (155/156)		
Clinical Success [3]	99.4% (155/156)		
Pre-dilatation	89.8% (141/157)		
Post-dilatation	39.1% (61/156)		
Provisional Stent	40.4% (63/156)		
- LL 15-25 cm:	33.3% (33/99)		
- LL > 25 cm:	52.6% (30/57)		

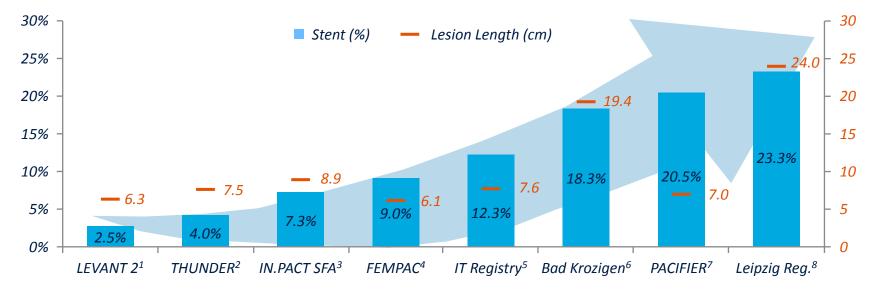

- 1. Device success: successful delivery, inflation, deflation and retrieval of the intact study balloon device without burst below the RBP
- 2. Procedure success: residual stenosis of \leq 50% (non-stented subjects) or \leq 30% (stented subjects) by core lab (if core lab was not available then the site reported estimate was used)
- 3. Clinical success: procedural success without procedural complications (death, major target limb amputation, thrombosis of the target lesion, or TVR) prior to discharge

SFA long study

Freedom from Composite Endpoint (TLR or >50% Restenosis) Long vs. Very Long (> 25 cm) Lesions

% freedom from composite endpoint ± SE

Vessel prep universally predilation for at least 4 minutes (personal communication Prof Biamino)

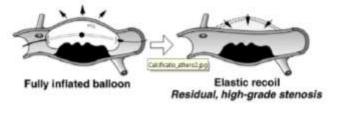


100%

DCB AND PROVISIONAL STENTING

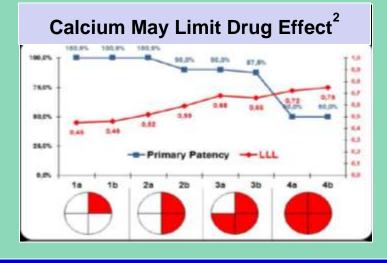
SCAFFOLDS STILL NEEDED, LIKELY AT RATES PROPORTIONAL TO LESION COMPLEXITY

Provisional stent rates in DCB trials trend with lesion length


1. Rosenfield K TCT 2013; 2. Tepe G et al. N Engl J Med. 2008; 3. Tepe CX 2014; 4. Werk M et al. Circulation. 2008; 5. Micari A et al. J Am Coll Cardiol Intv. 2012; 6. Zeller T CX 2013 oral presentation; 7. Werk et al. Circ Cardiovasc Interv. 2012; 8. Schmidt A LINC 2013 oral presentation

Clinical Limitations & Unmet Needs

Calcium as a Barrier


Calcium Limits Vessel Expansion¹

Significant difference in vessel compliance leads to overstretch in non-diseased tissue causing dissections, recoll, excessive injury, and poor outcomes

Figure 12.1. Elastic Recoil After PTCA of Calcified Lesions

Rather than creding the hord, calcified alternate, PTCA causes stretching of the controlateral plaque-free will segurant and methodize dilation. Freed ME, Sofor RD: Manual of Interventional Cardiology, CA. 22, 245-254

Longer Lesion Length

predictor of decreased patency⁵.

Freed MS, Manual of Interventional Cardiology, ²Fanelli DEBELLUM, ³Laird, CCI, June 2010 ⁴SMART Control IFU, ⁵Matusumura, DURABILITY IIJVS, July 2013, ⁶Davaine, European Journal of Vascular and Endovascular Surgery 44 (2012)

DEFINITIVE LE Subgroups

Subgroup	Claudicants (n=743)PatencyLesion(PSVR < 2.4)		CLI (n=279)		
			Patency (PSVR <u><</u> 2.4)	Lesion Length (cm)	
All (n=1022)	78%	7.5	71%	7.2	
Lesion type					
Stenoses (n=806)	81%	6.7	73%	5.8	
Occlusions (n=211)	64%	11.1	66%	10.3	
Lesion Location					
SFA (n=671)	75%	8.1	68%	8.6	
Popliteal (n=162)	77%	6.0	68%	5.4	
Infrapopliteal (n=189)	90%	5.5	78%	6.0	

Existing Atherectomy + DCB Data

Study (* Core Lab)	Туре	Patients	Lesions	Dissection ⁴	BO Stent	30-day MAE	1-year	>1-year
*DEFINITIVE AR ¹	DCB [†] DAART [†] DAART- Ca	54 48 19	54 48 19	19% (10/54) 2% (1/48) 0%	3.7% (2/54) 0% 5.3% (1/19)	NR	89.6% 93.4% 	?
Cioppa ²	DAART	30	30	6.7% (2/30)	6.7% (2/30)	13% (4/30) (1-year)	90%	?
Stavroulakis ³	DAART	21	26	NR	NR	14% (3/21)	95%	90% (18-mo)

1. "DEFINITIVE AR: A Pilot Study of Antirestenosis Treatment. 12-month Results: Directional Atherectomy Followed by a Paclitaxel-Coated Balloon to Inhibit Restenosis and Maintain Vessel Patency" presented by Zeller T, VIVA Las Vegas 2014. † Randomized arms included DCB and directional atherectomy plus DCB (DAART). A non-

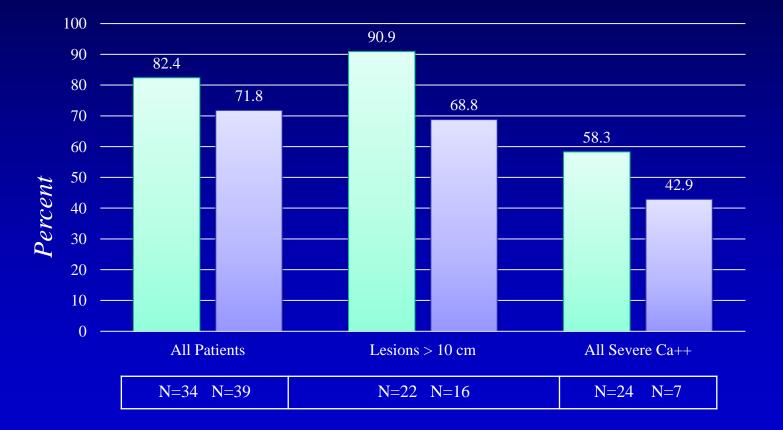
randomized arm, "DAART-Ca", was also enrolled in DEFINITIVE AR, but DUS patency is unavailable for the 19 subjects in this arm.

2. 3 Cioppa A, et al. Cardiovasc Revasc Med 13:219-23 (2012).

Stavroulakis K, et al. J Endovasc Ther 22:847-52 (2015).

4. Zeller, et al., defined dissection as ≥ Grade C while Cioppa, et al., defined dissection via chroma-flow involving more than 60% of cross-sectional diameter with blood flow in the false lumen.

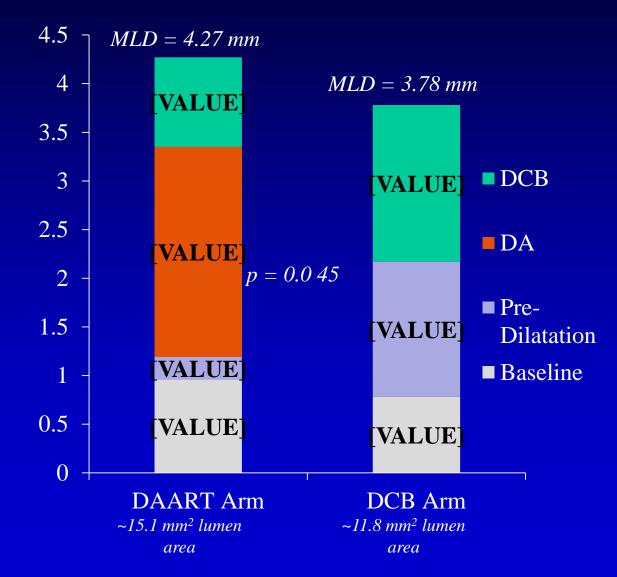
BASELINE CLINICAL DATA

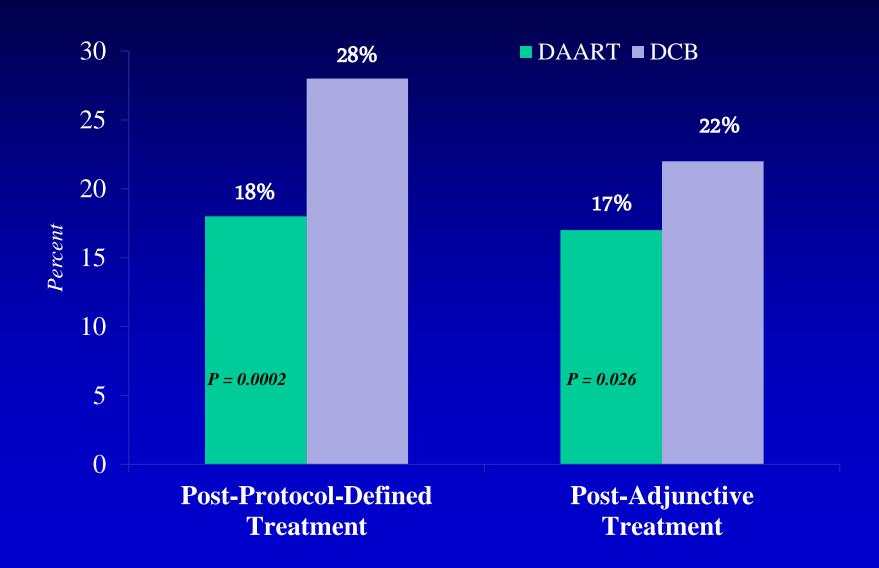

BASELINE DEMOGRAPHICS	DAART (N=48)	DCB (N=54)	<i>P</i> -VALUE ¹	DAART SEVERE CA++ (N=19)
Age	70.1 ± 9.7	69.0 ± 8.2	0.44	69.7 ± 8.9
Male	64.6%	68.5%	0.68	73.7%
History and Risk Factors				
Angina	4.2%	9.3%	0.44	26.3%
Diabetes	27.1%	35.2%	0.40	26.3%
Hypertension	87.5%	81.5%	0.43	84.2%
Hyperlipidemia	70.8%	68.5%	0.83	73.7%
Renal Insufficiency	12.5%	14.8%	0.78	15.8%
Current/Previous Smoker <i>. p-value for DAART RCT vs. DCB</i>	50.0% groups	63.0%	0.23	36.8%

LESION CHARACTERISTICS

Longer Lesions Treated in DAART Arm

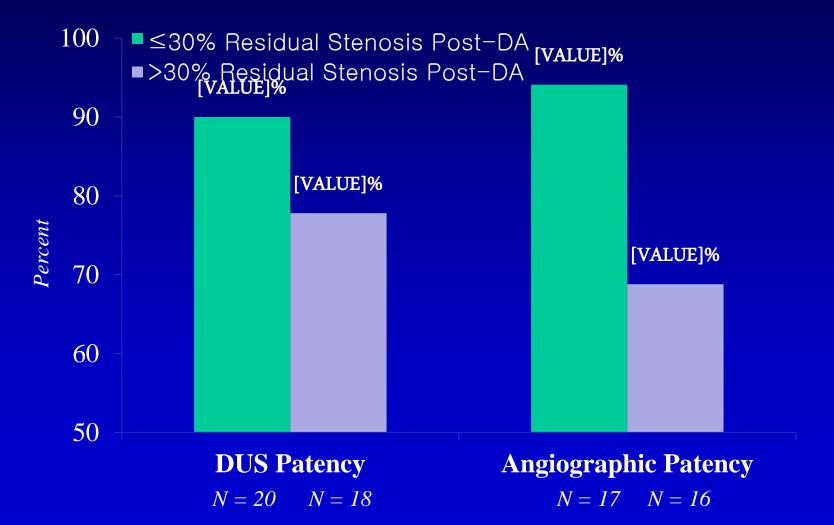
BASELINE CHARACTERISTICS	DAART (N= 48)	DCB (N = 54)	<i>P</i> - VALUE ¹	DAART SEVERE CA++ (N=19)
Lesion Length (cm)	11.2	9.7	0.05	11.9
Diameter Stenosis	82%	85%	0.35	88%
Reference vessel diameter (mm)	4.9	4.9	0.48	5.1
Minimum lumen diameter (mm)	1.0	0.8	0.34	0.7
Calcification	70.8%	74.1%	0.82	94.7%
Severe calcification	25.0%	18.5%	0.48	89.5%


ANGIOGRAPHIC PATENCY


■DAART ■DCB

Per Core Lab Assessment. "All Severe Ca++" group includes all patients with severe calcium (including randomized and non-randomized). Results for all patients who returned for angiographic follow-up.

GREATER MLD AFTER DAART



DAART DECREASES RESIDUAL STENOSIS

IMPACT OF LUMINAL GAIN

DAART ARM: INCREASED LUMEN GAIN MAY IMPROVE 12-MONTH PATENCY

What's ahead...*REALITY study*

- International, multi-center, prospective assessment of the safety and effectiveness of combined "vessel preparation" with directional atherectomy (HawkOne® /TurboHawk®) + IN.PACT Admiral® DCB in LONG and SEVERELY calcified FP lesions in 250 patients with RC 2-4 claudication—23 sites (US/Germany)
- Angiographic & Doppler core labs will independently adjudicate PP through 1 year and freedom from CD-TLR through 24 mo
- IVUS, peripheral Ca++ grading, histology sub-studies, WIQ and QoL assessments

How much is enough?

- Debulking is not the goal of therapy with many atherectomy devices
- Rather, the issue is arterial compliance
- No one study has shown what metric is needed to confirm effective arterial compliance change
 REALITY may answer this question
- Ultimately, the over use of atherectomy may lead to complications that may be directly attributable or accessory to the complication from DCB

Conclusions

- DCB's have dramatically changed the SFA landscape
- Either the data suggests that up-front therapy is beneficial and durable in short and intermediate lesion lengths or that in surrogate fashion work for restenosis
- What we do not know or remains ill-defined is"vessel prep"
 - PTA alone in simple to long lesions may be enough
 - Complex or calcific lesions may require debulking
- RCT data compel discussion and treatment strategies
 - Vessel prep remains a key element of benefit for many technologies
 - Calcium remains a principal disruptor for DCB

• **REALITY may answer this question**

- A "leave nothing behind" strategy appears to be the current trend for SFA therapy though no one group has shown the benefit beyond a modest SFA lesion length
- Currently, a debulk strategy may indeed remain a viable technology in the SFA particularly to avoid stent placement