

Case 3 : How Would I Treat the Case in Malaysia ? **3 Countries' Joint Session @ TCTAP 2017** Gim-Hooi Choo MD

Malaysia

25th. A;ril, 2017

Disclosure

- Speaking & Advisory honorariums from Novartis, MSD, Roche, Solvay Pharma, Xepa-Soul Pattinson, Servier, Pfizer, Novartis, Bayer Pharma, Cordis J&J, Astra Zeneca, Lilly, Sanofi Aventis, Medtronic, Novo Nordisk, Terumo, Menarini, Alvimedica, Biosensors
- No conflict of interest with reference to this presentation

High Risk Features : Clinical

- Octogenarian 82 years old
- Type 2DM; Renal function -?normal
- Anterior NSTEMI
- Positive biomarkers : Tn T, CK-MB, NT-proBNP
- Likely, LV dysfunction (Diastolic HF ± transient LV systolic dysfunction) or just Beta-blocker induced bronchospasm
- GRACE ACS Risk Score : 231 –
 Very High Risk : In-hospital mortality rate 36%

Fox KA, Dabbous OH, Goldberg RJ et al. **Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE).** BMJ. 2006 Nov 25;333(7578):1091. Epub 2006 Oct 10.

The Battle – PCI vs CABG vs OMT?

Clearly my choice : 'Early' Revascularisation On background of Optimal Medical Therapy

Not Doing Anything (Medical Rx alone) is NOT an Option !

The Real Battle – PCI vs CABG?

Asian Cultural Thing : "I'm old, Leave me alone"

AFTER EIGHTY : Primary Endpoint (Primary endpoint = death, MI, urgent revascularisation or stroke)

447 pts ≥80 years old with NSTEMI/UA randomized to invasive vs. conservative strategy

Norway. Mean age 84.8 yrs, 40% female, median Grace score 138

Invasive Angio/Revasc 96%/50% (mean 3 days) vs. Conservative : 0%

Tegn N et al. Lancet. 2016;387:1057-65

TIMACS : 6 months Death/MI/Stroke (%) based on high (≥140) vs low (<140) GRACE score

Mehta SR et al. *NEJM*. 2009;360:2165 – 2175

Which Revascularisation Option : Heart Team Approach

2011 ACCF/AHA/SCAI

Heart Team Approach to Revascularization
Decisions:
Recommendations CLASS I.
Level of Evidence: C

A Heart Team approach to
revascularization is recommended in
patients with unprotected left main or
complex CAD .

GN. Levine, ER. Bates, JC. Blankenship et al. 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention

Journal of the American College of Cardiology Dec 2011, 58 (24)

2014 ESC/EACTS

C

It is recommended to base the revascularization strategy (ad hoc culprit-lesion PCI/multivessel PCI/CABG) on the clinical status and comorbidities as well as the disease severity, i.e. distribution and angiographic lesion characteristics (e.g. SYNTAX score), according to the local Heart Team protocol.

S Windecker, P Kolh, F Alfonso , et al. 2014 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal (2014) 35, 2541–2619 doi:10.1093/eurheartj/ehu278

Evidence & Guidelines: CABG preferred revascularisation

Heart Team Concept is rarely implemented in Malaysia

Recommendations according to extent of CAD	CABG		PCI	
	Class ^a	Level ^b	Class ^a	Level ^b
One or two-vessel disease without proximal LAD stenosis.	IIb	С	I	С
One-vessel disease with proximal LAD stenosis.	1	Α	I	Α
Two-vessel disease with proximal LAD stenosis.	1	В	I	С
Left main disease with a SYNTAX score \leq 22.	1	В	I	B
Left main disease with a SYNTAX score 23–32.	I.	В	lla	В
Left main disease with a SYNTAX score >32.	I.	В	ш	В
Three-vessel disease with a SYNTAX score \leq 22.	1	Α	I	В
Three-vessel disease with a SYNTAX score 23–32.	1	Α	ш	В
Three-vessel disease with a SYNTAX score >32.	1	Α	Ш	В

S Windecker, P Kolh, F Alfonso , et al. 2014 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal (2014) 35, 2541–2619 doi:10.1093/eurheartj/ehu278

PCI vs. CABG for Left Main Disease Meta-analysis of 4 RCTs. 1 year Death/MI/Stroke

Capodanno et al, *JACC* 2011;58:1426-32

PCI vs. CABG for Left Main Disease Meta-analysis of 4 RCTs. 1 year TVR

Capodanno et al, *JACC* 2011;58:1426-32

PCI vs. CABG for Left Main Disease Meta-analysis of 4 RCTs.

1 year stroke

	PCI	CABG	OR (95%CI)	<i>p</i> -Value	OR (95	5%CI)
LEMANS	0/52	2/53	0.20 (0.01-4.09)	0.30		-
SYNTAX left main	1/355	8/336	0.12 (0.01-0.93)	0.04		
Boudriot et al.						
PRECOMBAT	0/300	2/300	0.20 (0.01-4.16)	0.30		—
Fixed effects estimate	<mark>0.1%</mark> (1/707)	1.7% (12/689)	0.15 (0.03-0.67)	0.01		
Random effects estima	te		0.15 (0.03-0.67)	0.01		10 100
l²=0%					Favors PCI	Favors CABG

Capodanno et al, *JACC* 2011;58:1426-32

Ostial and Mid-shaft vs. Bifurcation in LMCA PCI 1111 patients treated with DES; 2 year follow-up

Palmerini T, et al. SICI-GISE Survery. Eur Heart J 2009

Dr. Anek : How will you treat ?

- A) CABG => She refuse surgery
- B) PCI to RCA, follow by stage PCI to LM
- C) PCI to (only)Ostium LM, follow by stage PCI to RCA
- D) PCI to CTO LAD, follow by stage PCI to RCA
- E) PCI to Ostium LM + CTO LAD, follow by stage PCI to RCA
- F) Medications
- G) Other(s) option

Dr. Anek : How will you treat ?

- A) CABG => She refuse surgery
- B) PCI to RCA, follow by stage PCI to LM
- C) PCI to (only)Ostium LM, follow by stage PCI to RCA
- D) PCI to CTO LAD, follow by stage PCI to RCA
- E) PCI to Ostium LM + CTO LAD, follow by stage PCI to RCA
- F) Medications
- G) Other(s) option

PCI Strategy : How ?

 Anatomically 2-vessel CAD with moderate SYNTAX score with ostial LMCA involvement

- Procedural medical Rx:
- DAPT: Aspirin + Ticagrelor
- UFH
- Background pre-Rx: LMWH, Statin, ACEi, Betablocker

PCI Targets:

Mid-LAD CTO

How would I treat?

- Trans-radial access; 7Fr Sheath or 7Fr Glidesheath slender; 6Fr or 7Fr Guiding catheters
- ? Haemodynamic Support IABP/Impella
- PCI Sequence :
- a) Mid-RCA stenosis 1st.
- b) Then Ostial LMCA : Single stent strategy

c) LAD CTO – staged or same sitting (depending on procedure duration, contrast load, pt's comfort level)

LMCA Intervention

- IVUS guidance Significance of LM stenosis, Stent optimisation, Prognosis
- ? FFR
- New generation DES (ISAR LM-2, PRE-COMBAT 1 & 2); Appropriate sizing -IVUS guided
- Single stent : ostial-body LMCA placement

Left Main Disease: Which is Significant Angiographically – Versus IVUS Assessment

Stent Underexpansion Predicts MACE 133 pts (33.8%) had ≥ 1 segment underexpansion(UE)

N=403; Routine 9-mth Angio F/up

LCX not imaged in 10 2-stent pts

Kang S et al. Circ Cardiovasc Interv 2011;4:562-569

Stent Underexpansion Predicts MACE & TLR 133 pts (33.8%) had ≥ 1 segment underexpansion(UE) N=403; Routine 9-mth Angio F/up

Optimal expansion criteria (post hoc)

2-year MACE-free survival was lower in pts with vs. without underexpansion (89.4% vs. 98.1%; adj HR 5.56 [1.99 -15.49]; P<0.001) 2-year TLR-free survival was lower in pts with vs. without underexpansion (90.9% vs 98.5%; adj HR 6.08 [1.94 -19.02]; P=0.002); 12/16 TLRs (80%) occurred in cases with underexpansion

Kang S et al. Circ Cardiovasc Interv 2011;4:562-569

LCX not imaged in 10 2-stent pts

MAIN-COMPARE: Impact of IVUS guidance on mortality after LMCA-DES Implantation

Park SJ. Circ Cardiovasc Intervent. 2009;2:167-177

LMCA Intervention

- IVUS guidance Significance of LM stenosis, Stent optimisation, Prognosis
- ? FFR
- New generation DES (ISAR LM-2, PRE-COMBAT 1 & 2); Appropriate sizing – IVUS guided
- Single stent ostial-body LM placement

Visual assessment vs. LM FFR

Hamilos M et al. Circulation 2009;120:1505-1512

Visual-Functional Mismatch in LMCA Lesions: FFR vs. QCA 63 LMCA lesions included in overall analyses

- LMCA lesions had a greater frequency of reverse mismatch (underestimation), but lower mismatch (overestimation)
- The presence of plaque rupture influenced the assessment of mismatches

S-J Park et al, JACC CV Intv 2012

LMCA Intervention

- IVUS guidance Significance of LM stenosis, Stent optimisation, Prognosis
- ? FFR
- New generation DES (ISAR LM-2, PRE-COMBAT 1 & 2); Appropriate sizing –IVUS guided
- Single stent Ostial-body LMCA placement

LAD CTO Intervention :

Blunt proximal CTO cap Good collateral options as Interventional Channels

Initial Antegrade attempt but likely, Retrograde CTO Intervention

Long Term Management

- DAPT x 1 year or more (Clopidogrel after 1st. Year)
- Surveillance CT angiography or functional tests
- Optimal Medical Rx: Statin, ACEi

Thank You !

Terimakasih !

ขอบคณครบ **?** • 감사합니다 !