

I. Sheiban

University of Torino

Director Interventional Cardiology Pederzoli Hospital Pescheria del Grada (Verona)/ Italy

e-mail: isheiban@gmail.com

What are the expectations from Bioabsorbable stents

Bioabsorbable stent would avoid or overcome the above-mentioned downsides of metal in the artery.

Bioabsorbable stents would avoid the loss of (and perhaps restore) normal vasomotion improve persistently abnormal endothelial function, and permit vessel remodeling not possible within the metallic stent cage.

Will not compromise future CABG if needed Reduce late stent thrombosis

What About Recent Clinical Data ?

Meta-Analysis of 6 RCT ABSORB Series and EVERBIO II and TROFI II

A Target lesion failure

	BVS		EES		Weight	Fixed-effects odds ratio		
7	Events	Total	Events	Total	(%)	(95% CI)		
ABSORB China	8	238	10	237	9-3	0.79 (0.31-2.03)	·	
ABSORB II	16	335	5	166	9-6	1-55 (0-61-3-92)		
ABSORB III	102	1313	41	677	63-9	1.29 (0.09-1.85)		
ABSORB Japan	11	265	5	133	7.3	1.11 (0-38-3.19)		
EVERBIO II	9	78	11	80	9.4	0.82 (0-32-2-09)		
TROFI II	1	95	0	96	0-5	7-47 (0-15-376-35)		_
Overall	147	2324	72	1389	100	1-20 (0-90-1-60)	•	
Heterogeneity:	χ²=2·71, di	f=5; p=0·74	; l²=0%			<u> </u>	r r	

Test for overall effect: Z=1.25; p=0.21

Random-effects odds ratio 1.20 (95% CI 0.90-1.60)

B Myocardial infarction

	BVS		EES		Weight	Fixed-effects odds ratio	
-	Events	Total	Events	Total	(%)	(95% CI)	
ABSORB China	5	238	4	237	6-1	1.25 (0-33-4-66)	
ABSORB II	15	335	2	166	10-1	2.71 (0.97-7.56)	
ABSORB III	90	1313	38	677	74-5	1.23 (0.84-1.79)	
ABSORB Japan	9	265	3	133	7-2	1-48 (0-44-4-98)	
EVERBIO II	1	78	1	80	1.4	1.03 (0.06-16.55)	
TROFI II	1	95	0	96	0.7	7-47 (0-15-376-35)	
Overall	121	2324	48	1389	100	1-36 (0-98-1-89)	

Heterogeneity: χ²=2·80, df=5; p=0·73; *P*=0%

Test for overall effect: Z=1-86; p=0-06

Random-effects odds ratio 1.36 (95% Cl 0.98-1.89)

C Death

	BVS		EES		Weight
	Events	Total	Events	Total	(%)
ABSORB China	0	238	5	237	18-0
ABSORB II	0	335	1	166	3-2
ABSORB III	15	1313	3	677	58-1
ABSORB Japan	2	265	0	133	6.4
EVERBIO II	1	78	3	80	14-2
TROFIII	0	95	0	96	
Overall	18	2324	12	1389	100

Heterogeneity: χ²=11-47, df=4; p=0-02; l²=65% Test for overall effect: Z=0-14; p=0-89 Random-effects odds ratio 0.59 (95% Cl 0.12-2.74)

Lancet 2016; 387: 537-44

MI

TLF

Meta-Analysis of 6 RCT ABSORB Series and EVERBIO II and TROFI II

A Target lesion revascularisation

	BVS		EES		Weight	Fixed-effects odds ratio	TLR
	Events	Total	Events	Total	(%)	(95% Cl)	
ABSORB China	7	238	7	237	13-2	1.00 (0.34-2.88)	
ABSORB II	4	335	3	166	5.9	0.64(0.13-3.12)	
ABSORB III	42	1313	19	677	51-6	1-14 (0-67-1-95)	
ABSORB Japan	7	265	5	133	10-1	0.68 (0.20-2.31)	
EVERBIO II	8	78	11	80	16-3	0.72 (0.28-1.87)	
TROFI II	2	95	1	96	2.9	1.98 (0.20-19.29)	
Overall	70	2324	46	1389	100	0.97 (0.66-1.43)	•

Heterogeneity: χ²=1-69, df=5; p=0-89; l²=0% Test for overall effect: Z=0-16; p=0-87 Random-effects odds ratio 0.97 (95% Cl 0.66-1.43)

B Definite or probable stent thrombosis

	BVS		EES		Weight	Fixed-effects odds ratio	ST
	Events	Total	Events	Total	(%)	(95% Cl)	100
ABSORB China	1	238	0	232	3.1	7.21 (0.14-363.23)	
ABSORB II	3	335	0	166	8.2	4.49 (0.04-49.92)	
ABSORB III	20	1301	5	675	69-1	1.89(0.82-4.34)	
ABSORB Japan	4	262	2	133	16-5	1.02 (0.18-5.58)	
EVERBIO II	0	78	0	80		Not estimable	
TROFI II	1	95	0	96	3-1	7.47 (0.15-376.35)	
Overall	29	2309	7	1382	100	1.99(1.00-3.98)	
Heterogeneity:)	(² =1·90, d	f=4; p=0.75	5; l²=0%			0.01	

Test for overall effect: Z=1.96; p=0.05 Random-effects odds ratio 1.99 (95% Cl 1.00-3.98)

BVS better

EES better

In desider 11

Meta-Analysis of 6 RCT ABSORB Series and EVERBIO II and TROFI II

A In-device late lumen loss

	BVS		75				Weight	Mean difference	in -device LL	
76	Mean	(SD)	Total	Mean	(SD)	Total	(%)	(95% CI)		
ABSORB China	0.24	(0·39)	240	0.10	(0·32)	246	33.3	0.14 (0.08 to 0.20)		
ABSORB Japan	0.19	(0.31)	272	0.16	(0.33)	137	30.4	0.03 (-0.04 to 0.10)		
EVERBIO II	0.28	(0.39)	75	0.24	(0.32)	103	11.6	0.04 (-0.07 to 0.15)		
TROFI II	0.17	(0.24)	94	0.08	(0.28)	98	24.7	0.09 (0.02 to 0.16)		
Overall			681			584	100	0.08 (0.05-0.12)		
Heterogeneity:	$\chi^2 = 6.19$), df=3; p	0=0·10; l ²	=52%						
Test for overall	effect: Z	=4.42;	0<0.0001	L				ľ		

Random-effects mean difference 0.08 (95% Cl 0.03-0.13)

B In-segment late lumen loss

Downloaded from http://openheart.bmj.com/ on April 6, 2017 - Published by group.bmj.com

Interventional cardiology

openheart Use of bioresorbable vascular scaffold: a meta-analysis of patients with coronary artery disease

Mohamed Farag,^{1,2} Nikolaos Spinthakis,¹ Diana A Gorog,^{1,2,3} Abhiram Prasad,⁴ Keith Sullivan,² Zaki Akhtar,¹ Neville Kukreja,¹ Manivannan Srinivasan¹

СМ

	BVS	5	DES	5		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
EVERBIO II	1	78	1	160	1.5%	2.06 [0.13, 33.46]	2014	· · · · · · · · · · · · · · · · · · ·
ABSORB JAPAN	9	265	3	133	6.5%	1.52 [0.41, 5.72]	2015	
ABSORB CHINA	5	238	4	237	6.5%	1.25 [0.33, 4.71]	2015	· · · · · · · · · · · · · · · · · · ·
ABSORB II	19	335	4	166	9.5%	2.44 [0.81, 7.28]	2015	
ABSORB STEMI TROFI II ST	1	95	0	96	1.1%	3.06 [0.12, 76.15]	2015	· · · · · · · · · · · · · · · · · · ·
ABSORB III	90	1313	38	677	74.8%	1.24 [0.84, 1.83]	2015	·
Total (95% CI)		2324		1469	100.0%	1.36 [0.97, 1.91]		◆
Total events	125		50					
Heterogeneity: Tau ² = 0.00; Cl	ni² = 1.69,	df = 5 ((P = 0.89)); l² = 04	%			
Test for overall effect: Z = 1.79	(P = 0.07)						Favours BVS Favours DES

Test for overall effect using fixed-effect model: Z = 1.87 (P = 0.06)

Downloaded from http://openheart.bmj.com/ on April 6, 2017 - Published by group.bmj.com

Interventional cardiology

openheart Use of bioresorbable vascular scaffold: a meta-analysis of patients with coronary artery disease

Mohamed Farag,^{1,2} Nikolaos Spinthakis,¹ Diana A Gorog,^{1,2,3} Abhiram Prasad,⁴ Keith Sullivan,² Zaki Akhtar,¹ Neville Kukreja,¹ Manivannan Srinivasan¹

C : LLL

	BVS			DES			and the other states	Mean Difference		Mean Difference
Study or Subgroup	Mean [mm]	SD [mm]	Total	Mean [mm]	SD [mm]	Total	Weight	IV, Random, 95% CI [mm]	Year	IV, Random, 95% CI [mm]
EVERBIO II	0.28	0.39	75	0.24	0.32	103	16.7%	0.04 [-0.07, 0.15]	2014	
ABSORB STEMI TROFI II ST	0.17	0.24	94	0.08	0.28	98	25.7%	0.09 [0.02, 0.16]	2015	
ABSORB CHINA	0.24	0.39	240	0.1	0.32	246	29.3%	0.14 [0.08, 0.20]	2015	+
ABSORB JAPAN	0.19	0.31	272	0.16	0.33	137	28.3%	0.03 [-0.04, 0.10]	2015	÷ 1
Total (95% CI)			681			584	100.0%	0.08 [0.03, 0.13]		•
Heterogeneity: Tau ² = 0.00; Chi ² = 6.19, df = 3 (P = 0.10); l ² = 52% Test for overall effect: Z = 2.88 (P = 0.004)										-1 -0.5 0 0.5 1 Favours BVS Favours DES

CrossMark

1.0

10.0

Favours EES

International Journal of Cardiology 221 (2016) 1087-1094

Review

Safety and efficacy of everolimus-eluting bioresorbable vascular scaffolds versus durable polymer everolimus-eluting metallic stents assessed at 1-year follow-up: A systematic review and meta-analysis of studies*

Bertrand N. Mukete ^{a,1}, Liefke C. van der Heijden ^{b,1}, Kenneth Tandjung ^b, Hassan Baydoun ^a, Kapil Yadav ^a, Qusai A. Saleh ^a, Carine J.M. Doggen ^c, Nidal Abi Rafeh ^a, Thierry H. Le Jemtel ^a, Clemens von Birgelen ^{b,c,*}

Events / Total Study Odds ratio (95%-Cl) p-value Weight BVS EES A85ORB-II 15/ 335 2/165 3.84 (0.87-17.01) 4.71 0.08 9/265 **ABSORB Japan** 3/133 1.52 (0.41 - 5.72) 0.53 5.94 6 / 290 4/290 BV5-EXAMINATION 1.51 (0.42 - 5.41) 0.53 6.40 ABSORE-III 79 / 1313 31/677 1.33 (0.87 - 2.04) 0.19 57.33 **ABSORB China** 4/238 2/237 201(036-1107) 3.57 0.42 ABSORB Extend 27/812 12/812 2.29 (1.15-4.55) 0.02 22.05 Fixed 1.63 (1.18 - 2.25) <0.01 Random 1.63 (1.18-2.25) <0.01

0.1

Favours BUS

C) Target vessel myocardial infarction

Heterogeneity: $l^{1} = 0$; Q = 3.16; df = 5; p = 0.68

Test for overall effect: 2 = 2.96 (p < 0.01)

International Journal of Cardiology 221 (2016) 1087-1094

Review

Safety and efficacy of everolimus-eluting bioresorbable vascular scaffolds versus durable polymer everolimus-eluting metallic stents assessed at 1-year follow-up: A systematic review and meta-analysis of studies*

Bertrand N. Mukete^{a,1}, Liefke C. van der Heijden^{b,1}, Kenneth Tandjung^b, Hassan Baydoun^a, Kapil Yadav^a, Qusai A. Saleh ^a, Carine J.M. Doggen ^c, Nidal Abi Rafeh ^a, Thierry H. Le Jemtel ^a, Clemens von Birgelen ^{b,c,*}

Study	Events / Total		Odds ratio (95%-CI)	p-value	Weight			
	8V5	EES						
ABSORB-II	3/335	0/166	3.53 (0.18 - 68.26)	0.41	4.28	i) .	-	
ABSORE Japan	4 / 265	2/133	1.00 (0.18 - 5.55)	1.00	12.90			
BYS-EXAMINATION	7/290	4/290	1.77 (0.51 = 6.11)	0.37	24.56	-		0
ABSORE-III	20/1301	5/675	2.08 (0.78 - 5.55)	0.15	38.94		<u></u>	-0
ABSORB China	1/238	0/232	3.00 (0.12 - 74.02)	0.50	3.67	S <u></u>	-	
ABSORB Extend	8/812	2/812	4.03 (0.85 - 19.04)	0.08	15.65		-	
Fixed			2.10 (1.13 - 3.87)	0.02			-	
Random			2.10 (1.13 - 3.87)	0.02				
Heterogeneity: $I^2 = 0$;			0	1 Environ Bull	1.0	10.0		

F) Definite-or-probable scaffold/stent thrombosis

Test for overall effect: 2 = 2.35 (p = 0.02)

2016-2017 :

CARDIOVASCULAR SUMMIT

7 meta-analysis (mostly at study level): **Efficacy is comparable to Mettalic DES** Safety : BVS are associated with significantly higher stent thrombosis

		printing on apoint
DDI) I	EES (or	126,526 patients
	through	terms of ST with
).6%.	the OA	the risk of ST co
	the 24	than that of BP-E
OR=((0.240	probable ST with
	0.43 to	BVS showed low
Conc	1 30 to	
	1.00 10	CONCLUSIONS
ncol	respec	Contemporary D
omn		were shown to b
omp	Conclu	showed an incre
	CONCIU	This study warra

С

Results Seve (n=3,261) ve EES, risk of t confidence i vs. 0.7%, AR BVS. There v for ST assoc year) period: Conclusion (thrombotic r

0.98using (OR = The ri dilatio that th lack o Con In pat safet was n

We identified six RCTs th

Findings

risk of TLR (RR = 1.06: 95	-SE
-2.33) and cardiovascular	end
0.98-1.86) and definite or	
using the Peto odds ratio	
(OR = 2.08; 95% CI 1.06-	Res
The risk of definite or prob	sup
dilation was used and in p	wer
that the cumulative z-curv	wei
lack of robust data to supp	orn
	regi
Conclusions	reva
In patients with noncomple	
safety outcomes except fo	
was mitigated in trials whe	Cor
syndrome. Moreover, with	defi
such as device thrombosis	EES

The summary treatment effect for the 1-year relative rates of the patient-oriented composite endpoint did not differ significantly different between BVS and CoCr-EES (relative risk [RR] 1-09 [0-89 -1-34], p=0-38). Similarly, the 1-year relative rates of the device-oriented composite endpoint did not.

differ between the groups (RR 1-22 (95% CI 0-91-1-64), p=0-17). Target vessel-related myocardial Infarction was increased with BVS compared with CoCr-EES (RR 1-45 [95% CI 1-02-2-07], p=0-04), due In part to non-significant increases in peri-procedural myocardial infarction and device thrombosis with BVS (RR 2-09 [0-92-4-75], p=0-08). The relative rates of all-cause and cardiac mortality, all myocardial infarction, ischaemia-driven target lesion revascularisation, and all revascularisation did not differ between BVS and CoCr-EES. Results were similar after multivariable adjustment for baseline imbalances, and were consistent across most subgroups and in sensitivity analysis when two additional randomised trials with less than 1 year of follow-up were included.

Interpretation

In this meta-analysis, BVS did not lead to different rates of composite patient-oriented and deviceoriented adverse events at 1-year follow-up compared with CoCr-EES.

2 years and ST through 2 years.

EES con

zoti

Bioresorbable Vascular Scaffold Use for Coronary Bifurcation Lesions: A Substudy from GHOST EU Registry

Toru Naganuma,^{1,2} MD, Antonio Colombo,¹ MD, Maciej Lesiak,³ MD, Davide Capodanno,⁴ MD, PhD, Tommaso Gori,⁵ MD, PhD, Holger Nef,⁶ MD, Giuseppe Caramanno,⁷ MD, Christoph Naber,⁸ MD, Carlo Di Mario,⁹ MD, Neil Ruparelia,¹ MD, Piera Capranzano,⁴ MD, Jens Wiebe,⁶ MD, Aleksander Araszkiewicz,³ MD, Salvatore Geraci,⁷ MD, Hiroyoshi Kawamoto,^{1,2} MD, Stelios Pyxaras,⁸ MD, Alessio Mattesini,⁹ MD, Thomas Münzel,⁵ MD, Corrado Tamburino,⁴ MD, PhD, and Azeem Latib,¹ MD

ISAR-ABSORB Registry

- 419 patients
- Routine angiographic surveillance 6–8 months.

a 4	Patients				
	419				
Age (years)	66.6 ± 10.9		Patients		
Male sex	321 (76.6)	87	110	2 3	
Diabetes	132 (31.5)		419	6-month	12-month
Diabetes (insulin-treated)	43 (10.3)			rate	rate
Hypertension	361 (86.2)	Death	15	2.7	4.0
Hypercholesterolemia	281 (67.1)	Cardiac death	9	1.7	2.4
Current smoker	90 (21.5)	MI	11	2.4	27
Glomerular filtration rate < 60 mL/min	98 (23.8)	Death or MI	24	10	62
Body mass index (kg/m ²)	27.8 ± 4.8	Definite start thread aris	24	4.9	0.2
Left ventricular ejection fraction (%)	$55.2\pm9.4^{\rm a}$	Definite stent thrombosis	10	2.0	2.6
Previous MI	109 (26.0)	Definite or probable	12	2.4	3.1
History of coronary bypass surgery	18 (4.3)	stent thrombosis			
Multivessel disease	319 (76.1)	Target lesion revascularization	33	4.2	9.1
Clinical presentation		Composite of death, MI,	49	7.3	13.1
Stable coronary artery disease	256 (61.1)	target lesion revascularization			
Unstable angina	48 (11.5)	target lesion revusediarization			
Non-ST-elevation MI	80 (19.1)				
ST-elevation MI	35 (8.4)				

The NEW ENGLAND JOURNAL of MEDICINE

March 29, 2017DOI: 10.1056/NEJMoa1614954

ORIGINAL ARTICLE

Bioresorbable Scaffolds versus Metallic Stents in Routine PCI

Joanna J. Wykrzykowska, M.D., Ph.D., Robin P. Kraak, M.D., Sjoerd H. Hofma, M.D., Ph.D., Rene J. van der Schaaf, M.D., Ph.D., E. Karin Arkenbout, M.D., Ph.D., Alexander J. IJsselmuiden, M.D., Ph.D., Joëlle Elias, M.D., Ivo M. van Dongen, M.D., Ruber Y.G. Tijssen, M.D., Karel T. Koch, M.D., Ph.D., Jan Baan, Jr., M.D., Ph.D., M. Marije Vis, M.D., Ph.D., Robbert J. de Winter, M.D., Ph.D., Jan J. Piek, M.D., Ph.D., Jan G.P. Tijssen, Ph.D., and Jose P.S. Henriques, M.D., Ph.D., for the AIDA Investigators*

Characteristic	Scaffold Group (N=924)	Stent Group (N=921)
Age — yr	64.3±10.6	64.0±10.5
Male sex — no. (%)	670 (72.5)	700 (76.0)
Risk factors — no./total no. (%)		
Diabetes mellitus	171/924 (18.5)	153/921 (16.6)
Treated with oral medication	95/171 (55.6)	97/153 (63.4)
Treated with insulin	65/171 (38.0)	45/153 (29.4)
Hypertension	468/920 (50.9)	464/919 (50.5)
Hypercholesterolemia	344/915 (37.6)	350/914 (38.3)
Family history of coronary artery disease	451/886 (50.9)	469/886 (52.9)
Current smoker	248/867 (28.6)	273/861 (31.7)
History — no./total no. (%)		
Chronic renal failure	70/924 (7.6)	91/921 (9.9)
Ejection fraction <30%	22/910 (2.4)	17/900 (1.9)
Previous stroke or transient ischemic attack	46/923 (5.0)	58/921 (6.3)
Peripheral vascular disease	65/924 (7.0)	56/918 (6.1)
Previous myocardial infarction	166/924 (18.0)	172/921 (18.7)
Previous percutaneous coronary intervention	202/924 (21.9)	184/921 (20.0)
Previous bypass surgery	38/924 (4.1)	26/921 (2.8)
Clinical presentation — no. (%)		
ST-segment elevation myocardial infarction	240 (26.0)	225 (24.4)
Non-ST-segment elevation myocardial infarction	185 (20.0)	192 (20.8)
Unstable angina	70 (7.6)	87 (9.4)
Stable angina, documented ischemia, or both	361 (39.1)	370 (40.2)
Angiographically driven indication for PCI ⁺	51 (5.5)	36 (3.9)
Other	17 (1.8)	11 (1.2)
SYNTAX score;		
Mean	13.2±8.6	12.6±8.4
	and the state	

Figure 2. Kaplan-Meier Curves for Definite or Probable Device Thrombosis.

Shown are the event rates of definite device thrombosis (Panel A) and definite or probable device thrombosis (Panel B) through 30 months among the patients randomly assigned to receive bioresorbable vascular scaffolds or metallic stents. In each panel, the inset shows the same data on an enlarged y axis.

More Clinical Events to 1 year in smaller vessels - ABSORB III trial.

Median based on pooled Absorb and Xience

Circulation. 2016;134:168–182.

Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging

Y Sotomi et al ; EuroIntervention 2017; 12:1747-1756

RCT	pre-	post-dilatation	ACS	B2/C	Calc.	Bif.	TLR	ScT
EVERBIO II (N=78)			37	30			8 (10)***	0 (0.0)
ABSORB TROFI II (N=95)			100		5		1 (1.1)	1 (1.1)
ABSORB II (N=335)			20	46	13%		4 (1.0)	3 (0.9)
ABSORB China (N=238)			65	75	18%	50*	7 (2.9)	1 (0.4)
ABSORB III (N=1,322)			27	69	6		42 (3.2)	20 (1.5)
ABSORB Japan (N=266)			10	76	35%		7 (2.6)	4 (1.5)
Cohort study	pre-	post-dilatation	ACS	B2/C	Calc.	Bif.	TLR	ScT
ASSURE (N=183)				65	16	3	5 (2.8)	0 (0.0)
Gori et al (N=150)			100					3 (2.0)*
BVS-EXAMINATION (N=290)			100				5 (1.7)	7 (2.4)
POLAR-ACS (N=100)			100	58			1 (1.0)	1 (1.0)*
GH0ST-EU (N=1,189)			47	51		23	25 (2.5)**	23 (2.1)**
MICAT (N=1,305)			69	38		11		32 (3.0)
BVS EXPAND (N=249)			59	38	42	21	NA (3.4)	NA (1.7)
AMC registry (N=135)			50	67	11	15	8 (6.3)**	0 (0.0)**
ABSORB EXTEND (N=768)		_	27	44	13		11 (1.5)¶	4 (0.7)
ISAR-ABSORB (N=419)			39	49		13	33 (9.1)	12 (3.1)
Markovic et al (N=236)			44	81			7 (2.2)	0 (0.0)
Costopoulous et al (N=108)			48		35	18	1 (0.9)	1 (0.9)
RAI registry (N=122)			100			4	5 (4.1)**	3 (2.5)**
ESHC-BVS (N=100)			44	56	16	4	4 (4.0)	1 (1.0)
Tanaka et al (N=264)			14	75	23	47	14 (6.6) 1	3 (1.2)
	0 2	5 50 75 10	0 (%)					

What determines long-term outcomes using fully bioresorbable scaffolds - the device, the operator or the lesion?

Kyohei Yamaji, MD, PhD; Lorenz Räber, MD, PhD; Stephan Windecker*, MD Department of Cardiology, Bern University Hospital, Barn, Switzarland

Optimised implantation strategy						
Correctable	Uncertain whether correctable	Not correctable				
Malapposition ncomplete lesion coverage Underexpansion Acute disruption Overlap Acute recoil Uncovered struts Bifurcation	Late discontinuity Late recoil Restenosis	Peri-strut low intensity area Neoatherosclerosis				

EuroIntervention 2017;12-online publish-ahead-of-print January 2017

Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffold implantation for prediction of cardiac adverse events: development and internal validation of the PSP score

L Ortega Paz et al ; EuroIntervention 2017; 12 (online published ahead March 2017)

Clinical outcomes of a real-world cohort following bioresorbable vascular scaffold implantation utilising an optimised implantation strategy

N=264 patients 1 year 2 years TLF 22 (11.6%) 17 (7.9%) Cardiac death 3 (1.3%) 4 (2.0%) Target vessel MI 4 (1.8%) 4 (1.8%) TLR 14 (6.6%) 19 (10.4%) All-cause death 6 (2.8%) 7 (3.5%) Any myocardial infarction 5 (2.3%) 5(2.3%)TVR 17 (8.0%) 25 (13.8%) Definite/probable ST 3 (1.2%) 3 (1.2%) Event rates estimated using Kaplan-Meier analysis. MI: myocardial infarction; ST: scaffold thrombosis; TLF: target lesion failure; TLR: target lesion revascularisation; TVR: target vessel revascularisation

A Tanaka et al ; EuroIntyervention 2017;12:1730-1737

Table 4. Clinical outcomes at 1 and 2 years.

JACC: CARDIOVASCULAR INTERVENTIONS © 2017 FUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION VOL. ■, NO. ■, 2017 ISSN 1936-8798/\$36.00 http://dx.doi.org/10.1016/j.jcin.2016.12.020

Vasomotor Response to Nitroglycerine Over 5 Years Follow-up After Everolimus Eluting Bioresorbable Scaffold Implantation

Dariusz Dudek, MD, PhD,^a Łukasz Rzeszutko, MD, PhD,^b Yoshinobu Onuma, MD, PhD,^c Yohei Sotomi, MD,^d Rafał Depukat,^b Susan Veldhof, RN,^c Divine Ediebah, MS,^c Peter Staehr, MD,^r Wojciech Zasada, MD, PhD,^g Krzysztof P. Malinowski, MS,^b Grzegorz L. Kaluza, MD, PhD,^l Patrick W. Serruys, MD, PhD^l

At 5 years : No improvement in response to NTG using mean lumen diameter change by QCA. Only the maximal LD change increased significantly.

Moreover, the degree of response to NTG remained lower than in adjacent segments.

IMAGE IN CARDIOLOGY

Neoatherosclerosis: an emerging and conceptually unexpected cause of very late bioresorbable vascular scaffold failure

Nick Hiltrop^{1*}, MD; Walter Desmet^{1,2}, MD, PhD, FESC; Tom Adriaenssens^{1,2}, MD, PhD; Johan Bennett^{1,2}, MD

1. Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium; 2. Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium

This paper also includes supplementary data published online at: http://www.pcronline.com/eurointervention/113th_issue/331

EuroIntervention 2017;12:1643

Delayed fracture of a bioresorbable vascular scaffold implanted for in-stent restenosis

Teresa Bastante, MD; Javier Cuesta, MD; Fernando Rivero, MD; Marcos García-Guimaraes, MD; Amparo Benedicto, MD; Fernando Alfonso*, MD, PhD

Department of Cardiology, Hospital Universitario de La Princesa, Madrid, Spain

A 61-year-old woman presented with effort angina one year complete neointimal coverage of the fractured BVS (Panel I,

BVS technology advancment is expected to further improve the clinical outcome

Courtesy of A Abizzaid

Closing Remarks

- Data Confirm that efficacy of BVS is comparable to II generation metallic DES
- Safety (ST) still a concern (nearly 3%). However; the improvement of our knowledge about scaffolding and particularly about the appropriate implantation technique seems to reduce significantly ST –
- There is a trend toward vasomotor recovery over time which is consistent with the progressive degradation and bioresorption of the scaffold; however, the degree of response to NTG remained lower than in adjacent segments.
- Next generation is expected to improve mechanical characteristics and consequenly the clinical outcome
- At the present time, with the available devices expansion of angiographic indications should be considered as investigational and should not be encouraged