TCT Asia Pacific 2017

FFR, iFR, Contrast FFR, CFR, IMR, etc TOO MANY INDEXES ? PLEASE KEEP IT SIMPLE !

Seoul, Korea, april 25th, 2017

Nico H. J. Pijls, MD, PhD Catharina Hospital, Eindhoven, The Netherlands

Potential conflicts of interest

Speaker's name: NICO H J PIJLS

I have the following potential conflicts of interest to report:

Research contracts : St Jude Medical
 Consulting: St Jude Medical, Opsens

- Employment in industry
- X Stockholder of a healthcare company: Philips, GE, ASML, Heartflow
- □ Owner of a healthcare company
- □ Other(s):

□ I do not have any potential conflict of interest

Pre-amble:

- the most important factor with respect to symptoms (quality of life) and outcome (longevity) in patients with coronary heart disease, is the presence and extent of inducible ischemia
- coronary angiography (anatomic imaging) is fundamentally limited to establish the functional significance of coronary heart disease
- therefore, the importance of additional *physiologic methods* to quantify coronary disease, is undisputable

CFR: hyperemic blood flow / resting blood flow (1974, Gould)

CFR = a / b CFR = a'/ b' CFR = a"/ b"

What is CFR ?

- a/b ?? - a'/b'??
- a/b"??

PHYSIOLOGIC PARAMETERS OF STENOSIS SEVERITY:

- Although CFR is a beautiful physiologic concept, its usefulness for clinical decision making with respect to revascularisation, is limited
- To determine what is an *abnormal* value of a particular index, a clear *normal* value should be known, valid for *every patient*, *every artery*, and independant of the *location within the artery* where the measurement is performed !
- clinical measurement of CFR by Doppler is unreliable in > 30% of patients

Need for a more practical index: FFR (Pijls, de Bruyne, 1993)

During Maximal Vasodilatation

<u>CLINICAL</u> <u>PRACTICE:</u>

Mr van Z. 77 years, stable ang 2-3 posit ET

Fractional Flow Reserve in Clinical Practice

FFR: easy to measure, unequivocal normal value, not dependent on heart rate, blood pressure, or contractility

Hemodynamic Variability of FFR and CFR

B. De Bruyne et al Circulation 1996

Threshold value of FFR to detect significant stenosis

FFR is the *only* functional index which has ever been validated independently versus a true gold standard. (*Prospective multi-testing Bayesian methodology*)

ALL studies ever performed in a wide variety of clinical & angiographic conditions, found threshold between 0.75 and 0.80

Sensitivity : 100 % Specificity : 90 %

N Engl J Med 1996; 334:1703-1708

FFR-guided PCI vs CFR-guided PCI for clinical outcome: N= 2088 patients from IRIS registry

MACE RATE AFTER 4 YEARS OF FOLLOW-UP

Ahn J-M et al, Europ Heart J 2017 (in press)

FFR and Clinical Outcome: <u>3 important questions:</u>

- Is it safe to defer PCI if FFR is negative ? YES ! (Defer study 15-y f.u, Lancet 2015)
- Is it indicated to perform PCI if FFR is positive ?
 YES !
 (FAME-2, NEJM 2012 & 2014)
- Does systematic use of FFR improve PCI outcome
 YES !
 (FAME, NEJM 2009, EHJ 2015)

The superiority of FFR-guided PCI to improve outcome has been demonstrated now in many RCT's (comparing FFR-guided strategy directly to standard methods) in almost all clinical and angiographic conditions:

- From single to complex multivessel disease
- For LM disease
- Proximal LAD disease
- ACS, NSTEMI
- STEMI
- and many others

Non-hyperemic indexes and semi-hyperemic indices

Some older and newer indices derived from pressure measurement at rest: iFR, P_d / P_a at rest, diastolic P_d / P_a and cFFR (contrast) which have in common that they

all try to avoid hyperemia

- are not independently validated, only vs FFR
- have an accuracy of 80% compared to FFR
- not any single independent outcome study

advantage: no hyperemia needed *concern:* in 20% mis-classification, especially in large arteries in young patients

hybrid approach might be attractive

Correct Classification of Ischemic Stenosis

Recent studies suggest that in some populations resting indices (iFR, P_d/P_a), may be non-inferior to FFR (DEFINE-FLAIR & SWEDE-HEART studies)

CAVEAT:

- both studies were underpowered (as iFR and FFR yield similar decision in 80% of all patients, the power is made by the remaining 20% only. This weakens a non-inferior design and would strengthen a superiority design
- had (very) low risk populations

 1.4 lesion per patient vs 2.8 in FAME;
 7 stent per patient vs 1.9 in FAME;
 45 % of patients no PCI at all vs 11% in FAME
- and a large non-inferiority margin (> 50% of event rate)
 All of which concerns favour showing non-inferiority

Define-Flair, Swede-Heart studies (NEJM 2017)

Worrying finding in meta-analysis of both studies:

strong trend to increased mortality with iFR (p< 0.09)

THE CORONARY MICROCIRCULATION: Still a Black Box ??

Presently, we have excellent methods to assess epicardial coronary artery disease (FFR, IVUS, OCT)

.... but the coronary microcirculation is still a black box

epicardial compartment (> 400 µm)

microvascular compartment

IMR:

- measures *minimal* microvascular resistance
- determined by thermodilution and short coronary injections of saline
- always done 3 x to decrease intrinsic variability
- easy to perform
- hyperemia needed (relevant clinical parameter is *minimal* resistance; resting value has no clinical meaning
- variability still rather large (15%) and operator-dependent
- arbitrary units, not absolute units
- value of > 25 U mostly considered as microvascular disease

The ideal technique to assess the microcirculation, should be:

- understandable from sound physiology view
- easy to perform with standard PCI equipment
- accurate and reproducible
- operator-independent

Measurement of absolute flow and resistance by thermodilution and continuous infusion of Saline

(RayFlow® catheter, Pressure Wire and Coroventis software)

saline infused at 20 ml/min temperature of saline is 5° below blood temperature after mixing, temperature of mixtate is 1° below blood temp

blood flow must be 5 x infusion flow of saline

Full6: 17094898015 -W 151 L 109 XA 1/28

tip of the guiding catheter

infusion catheter

sensor of the radiwire

 $Qb = 134 \text{ ml/min} \longrightarrow \underline{\text{normal}} \text{ max flow} = 100/86 \times 134 = 156 \text{ ml/min}$ Absolute microvascular resistance = $P_d/Q(x80.000) = 380 \text{ Wood Units}$

A NEW WINDOW TO THE CORONARY MICROCIRCULATION

You like to learn more about this new technique....?

Wednesday 5 p.m SYMPOSIUM ROOM 2A, level3

"A NEW WINDOW TO THE MICROCIRCULATION"

SUMMARY: HOW TO KEEP IT SIMPLE.....

FFR

EPICARDIAL DISEASE: FFR

- Workhorse in the CathLab for decision making
- extensively validated in almost all angiographic & clinical conditions (MVD, ACS & STEMI, LM, proxLAD, post-PCI)
- only index which is incontrovertibly related to better outcome
- in some conditions: resting indices or hybrid approach (*iFR or Pd/Pa, or cFFR*), but some caveats

MICROVASCULAR DISEASE : IMR ----- Absolute R_{micro}