Integrated Use of FFR and IVUS in Non-LM Revascularization

Joo Myung Lee, MD, MPH, PhD

Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea

Fractional Flow Reserve (FFR)

"FFR-guided PCI strategy for CAD has proved its benefit over angiography-guided PCI or medical treatment by previous randomized clinical trials"

Pijls NH et al., J Am Coll Cardiol. 2010;56:177-184 / Van Nunen et al., Lancet 2015 Nov 7;386(10006):1853-60 Fearon W. et al., Circulation 2010;122:2545-2550 / De Bruyne B, et al., N Engl J Med. 2014;371:1208-1217

Intravascular Ultrasound (IVUS)

"IVUS-guided PCI strategy for CAD has proved its benefit over angiography-guided PCI by previous randomized clinical trials/registries/meta-analysis"

SAMSUNG MEDICAL CENTER SAMSUNG

Witzenbichler B. et al., Circulation. 2014;129(4):463-70 / Kim JS et al. Am Heart J 2011;161:180-7 Kim BK et al. Circ Cardiovasc Interv. 2015 / JAMA. 2015;314:2155-2163

FFR and IVUS - Complementary Role in Patients Management -

- Complementary Role in PCI
 - Pre-Procedural Lesion Assessment
 - During- or Post-Procedural Optimization of PCI

Fundamental Reason

- Pre-PCI : Discordance Between Anatomy and Functional Significance
- 2 During- or Post-PCI: Intravascular imaging can provide much information for stented segment
- ③ Physiologic assessment can stratify high risk patient after successful revascularization

FFR and QCA : Pre-Intervention

- Discordance Between Anatomy and Functional Significance -

Routine 3-Vessels FFR (Regardless of Stenosis Severity) FFR as Clinical Indication (At lease one Intermediate Stenosis)

Among 3115 vessels Reverse Mismatch : 7.0% Mismatch : 16.1%

Total 23.1% Discordance

Among 569 vessels Reverse Mismatch : 13.1% Mismatch : 9.5%

Total 22.6% Discordance

%DS>50% to Predict FFR≤0.80 Sensitivity : 61.2% Specificity : 66.9%

3V-FFR-FRIENDS Study, Under Review Curzen et al. RIPCORD, Circ Intervention 2014 Toth et al. EHJ 2014

FFR and Invasive Imaging: Pre-Intervention

- Discordance Between Anatomy and Functional Significance -

IVUS

OCT

Discordance between Stenosis Severity and Functional Significance Is not a problem of "How accurate in measuring stenosis severity"

Functional significance cannot be predicted using stenosis severity.

Koo BK et al. JACC Intervention 2011 Gonzalo et al. JACC 2012

Physiologic Index is Better Marker of Stenosis Severity

"Unique Pressure Gradient – Absolute Myocardial Blood Flow" relationship than by angiographic %DS.

Lee JM, Koo BK, Under Review

Re-Classification of Disease Extent : FFR

Anatomical SYNTAX

Nam CW, JACC 2011

Functional SYNTAX

Per-Patient Decision of Treatment Strategy : FFR

R3F Registry (N=1075)

Pre-FFR Decision

Change in Treatment Decision was occurred in 43% of Population

RIPCORD Trial (N=200)

Pre-FFR Decision

Change in Treatment Decision was occurred in 26% of Population

Van Belle E et al. Circulation 2014 Curzen et al. RIPCORD, Circ Intervention 2014

Per-vessel Treatment Decision for Revascularization : FFR

"Deferral" of revascularization & Secondary Prevention ⁺

[†]According to clinical and socioeconomic status of patient and technical difficulty of revascularization [‡]More important in patient care than FFR-guided decision.

Per-Patient Treatment Decision : Routine Application of FFR

Pre-Procedural Planning of PCI : IVUS - Plaque Characterization -

Echolucent Plaque

Attenuating Plaque

Attenuating Plaque, High PB, Positive Remodeling

Gray-scale IVUS plaque character associated with worse clinical outcome

Infarct Size

91 patients with acute STEMI

No Reflow 170 patients with acute STEMI

Kusama et al. JACC 2007 Endo et al, JACC Intervention 2010 J Am Coll Cardiol Img 2012;5:S111–8

Pre-Procedural Planning of PCI : IVUS - Plaque Characterization and Outcome -

PROSPECT Trial

ATHEROREMO Presence of TCFA with PB 270% (large TCFA Presence of TCFA with PB<70% (small TCFA)

VIVA

Predictor	Multivariable HR (95% Cl)	P value	Pr	redictor	Adjusted HR (95% CI)	P value	Predictor	Univariate HR (95% CI)	P value
PB (MLA) ≥ 70%	5.03 (2.51-10.11)	<0.001	PB (N	ILA) ≥ 70%	2.90 (1.60-5.25)	<0.001	PB (MLA) ≥ 70%	8.13 (1.63-40.56)	0.011
VH-TCFA	3.35 (1.77-6.36)	<0.001	Vł	H-TCFA	1.98 (1.09-3.60)	0.026	VH-TCFA	7.53 (1.12-50.55)	0.038
MLA ≤ 4.0mm ²	3.21 (1.61-6.42)	0.001	MLA	≤ 4.0mm²	1.23 (0.67-2.26)	0.05	Remodeling index	2686 (1.94- 3.72*10 ⁶)	0.032

54

159

312

114

122

Vulnerable Plaque in IVUS (High plaque burden, Positive remodeling, Iow MLA, VH-TCFA) is Associated with Worse Clinical Outcome in ACS patients

PROSPECT. NEJM 2011 ATHEROREMO IVUS, EHJ 2014 VIVA, Calvert et al. JACC Imaging 2011

Pre-Procedural Planning of PCI : IVUS

- Lesion Severity and Mechanism of Luminal Narrowing -

- Quantitative evaluation of lumen, plaque, and vessel
- Mechanism of narrowing
- Plaque and Vessel Geometry (especially important in bifurcation PCI)

LM Ostium

Bifurcation (SB)

Courtesy to My Mentor, Prof. Koo BK Lee JM, Koo BK, The Role of IVUS in the OCT Era (Chapter in the Textbook, In Press)

Pre-Procedural Planning of PCI : IVUS - Appropriate Sizing -

Pre-Procedural Planning of PCI : IVUS - Proper Landing Zone -

Poor Correlation with Angiographic %DS and IVUS Plaque Burden In Reference Segment

(A) Of 785 proximal reference segments with %DS <20%, 290 (37%) had plaque burden >50%.

(B) Of 724 distal reference segments with %DS <20%, 153 (21%) had plaque burden >50%.

Kang SJ et al. Am J Cardiol 2013.

Post-Procedural Optimization of PCI : IVUS - Adequate Expansion -

990 lesions treated by SES, ZES, and EES Post-PCI MSA was the only Independent Predictor for 9-Month ISR

IVUS MSA Best Cutoff Value (To prevent 6-9Mo ISR)

Variable	OR	95% CI	P value		Stant	Somalo Sizo	МСА
Univariable					Stent	Sample Size	WIJA
DM	0.981	0.449-2.144	0.002	SIRIUS	SES	72	5.0mm ²
Smoker	2.241	0.997-5.037	0.051				
Multivessel disease	0.608	0.297-1.248	0.608	Hong et al.	SES	550	5.5mm²
IVUS MSA	0.710	0.569-0.887	0.002	Ū			
IVUS Post-EEM	0.929	0.853-1.013	0.095	TAXUS Meta	PES	1098	5.7mm ²
IVUS Reference vessel	0.404	0.180-0.970	0.028				
				Song et al	ZES	220	5.3mm ²
MLD	0.535	0.268-1.065	0.075	Solig et al.			
Multivariable				Song of al	EES	229	5.4mm ²
IVUS MSA	0.722	0.581-0.897	0.003	Song et al.	LLO		

Adequate stent expansion is still important in the DES era.

J Am Coll Cardiol 2004;43:1959–63 / Catheter Cardiovasc Interv. 2014;83:873-8. Hong MK et al. Eur Heart J 2006./ Doi H et al. J Am Coll Cardiol Intv 2009.

Post-Procedural Optimization of PCI : IVUS - Evaluating Acute Complication -

ISA

Hematoma

Thrombi or Tissue prolapse

Edge dissection

Post-Procedural Optimization of PCI : FFR - Evaluating Functional Completeness -

Study-level meta (N=7470)

Patient-level meta (N=966)

High Post-PCI FFR (Per-vessel) is Significantly Associated with Lower Risk of Future Events

> Rimac et al. AHJ 2017 Nils P. Johnson et al. JACC 2014

Results from 3V-FFR-FRIENDS Study

① 3V-FFR is a Prognostic Indicator as Global Marker of Physiologic Atherosclerotic Burden

② Functional Incomplete Revascularization (residual functional SYNTAX ≥0) showed higher MACE

3V-FFR-FRIENDS Study, Under Review Pre-specified Sub-study of 3V-FFR-FRIENDS, Under Review

Integrated Use of FFR and IVUS - Summary -

Integrating Imaging and Physiology will Enhance Patient Outcome

Thank You For Your Attention !

Joo Myung Lee, MD, MPH

Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea

If you have any question, don't hesitate to e-mail me. <u>drone80@hanmail.net</u>

