Who is going to bleed?

NAKAZAWA, G TOKAI Univ.

Delayed Arterial Healing as a cause of LST

Joner M & Finn AV. J Am Coll Cardiol. 2006;48(1):193-202.

Interventional Cardiology International Course

Histologic findings in 2nd Gen DES at autopsy

SUNRISE lab.

Otsuka F et al. Circulation. 2014;129:211-223

One-Year Outcome of a Prospective Trial Stopping Dual Antipletelet Therapy at 3-Month after Everolimus-eluting Cobalt-chromium Stent Implantation

ShorT and OPtimal duration of Dual AntiPlatelet Therapy after everolimus-eluting cobalt-chromium stent (STOPDAPT) trial

Masahiro Natsuaki, MD

Kyoto University Graduate School of Medicine, Saiseikai Fukuoka General Hospital

Takeshi Morimoto, MD, MPH; Erika Yamamoto, MD; Hiroki Shiomi, MD

Yutaka Furukawa, MD, Mitsuru Abe, MD, Koichi Nakao, MD; Tetsuya Ishikawa, MD

Kazuya Kawai, MD; Kei Yunoki, MD; Shogo Shimizu, MD; Masaharu Akao, MD; Shinji Miki, MD Masashi Yamamoto , MD; Hisayuki Okada, MD; Kozo Hoshino, MD; Kazushige Kadota, MD

Yoshihiro Morino, MD; Keichi Igarashi, MD; Kengo Tanabe, MD

Ken Kozuma, MD and Takeshi Kimura, MD

On behalf of the STOPDAPT Investigators

STOPDAPT Patient Flow

Landmark Analysis at 3-month

Duration of DAPT

Disea	se / Conf		DES	Recommen dation	LOE
ACS			12mo		
	ESC	2014			А
Stable AP			6m0		
ACS	АСС/АНА	2016	12mo	Class I	В
Stable AP		2010	6mo		В
Stable AP	100	2008	12mo		В
STEMI	JCS	2011	12mo		А

🚫 SUNRISE lab.

7

Dual Antiplatelet Therapy Beyond One Year After Drug-eluting Coronary Stent Procedures

Laura Mauri, Dean J. Kereiakes, Robert W. Yeh, Priscilla Driscoll-Shempp, Donald E. Cutlip, P. Gabriel Steg, Sharon-Lise T. Normand, Eugene Braunwald, Stephen D. Wiviott, David J. Cohen, David R. Holmes, Mitchell W. Krucoff, James Hermiller, Harold L. Dauerman, Daniel I. Simon, David E. Kandzari, Kirk N. Garratt, David P. Lee, Thomas K. Pow, Peter Ver Lee, Michael J. Rinaldi, and Joseph M. Massaro on behalf of the Dual Antiplatelet Therapy (DAPT) Study Investigators

Time in months after index stent procedure (not to scale) Enrolled: Subjects treated with FDA-approved DES or BMS. Subjects on oral anticoagulant therapy or with life expectancy < 3 years excluded.

Randomized: Alive and free from MI, stroke, repeat revascularization, and moderate or severe bleeding, and adherent with thienopyridine (80% to 120% of doses taken and no interruption > 14 days).

Mauri, Kereiakes et al AHJ 2010; 160(6): 1035-1041

ClinicalTrials.gov number NCT00977938

Co-Primary Effectiveness End Point MACCE

Co-Primary Effectiveness End Points & Components: 12-30 Months

S

Non-Stent Thrombosis Myocardial Infarction

Primary Safety End Point & Components: 12-30 Months

Prolonged DAPT and Clinical Event

Benefit of Prolonged DAPT

Stent thrombosis \rightarrow 1% Reduction Neoathero/ Hypersensitivity
Non-ST MI \rightarrow 1% Reduction
Secondary prevention effect Of Theinopyridine

- Drawback of Prolonged DAPT
 - Major bleeding \rightarrow 1% Increase

Abnormal Vascular Responses following DES Implantation

Hypersensitivity

Nakazawa, G et al. J Am Coll Cardiol 2011:57(4).390-8

Neoatherosclerosis

Nakazawa, G & Otsuka, F et al. J Am Coll Cardiol. 2011:57(11):1314-22.

Incidence of Neoatherosclerosis in EES

Otsuka F, et al. Circulation. 2014 Jan 14;129(2):211-23

Interventional Cardiol International Course

Different Mechanisms of DES failure with time

DAPT in 2nd (3rd) Gen DES era

Risk of major adverse cardiovascular events comparing extended dual antiplatelet therapy vs. aspirin alone.

	Extended DAPT		Aspirin Alone		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
2006 CHARISMA MI cohort	125	1903	162	1943	21.4%	0.77 [0.61, 0.98]		
2012 PRODIGY	63	732	69	733	13.3%	0.91 [0.65, 1.28]		
2014 ARCTIC-Interruption	3	156	4	167	1.0%	0.79 [0.18, 3.51]	• • • • • • • • • • • • • • • • • • • •	
2014 DAPT	59	1805	108	1771	14.6%	0.52 [0.38, 0.72]		
2014 DES-LATE	56	1512	66	1551	12.9%	0.85 [0.60, 1.21]		
2015 PEGASUS-TIMI 54	980	14095	578	7067	36.8%	0.84 [0.76, 0.94]		
Total (95% CI)		20203		13232	100.0%	0.78 [0.67, 0.90]	•	
Total events	1286		987					늰
Heterogeneity: $Tau^2 = 0.01$; $Chi^2 = 8.36$, $df = 5$ (P = 0.14); $I^2 = 40\%$								
Test for overall effect: $Z = 3.28$ (P = 0.001)								

Risk of individual cardiovascular and bleeding endpoints comparing extended dual antiplatelet therapy vs. aspirin alone.

Jacob A. Udell et al. Eur Heart J 2015

Association of Spontaneous Bleeding and Myocardial Infarction With Long-Term Mortality After Percutaneous Coronary Intervention

Dhruv S. Kazi, MD, MSc,*†‡ Thomas K. Leong, MPH,§ Tara I. Chang, MD, MS, Matthew D. Solomon, MD, PHD,§ Mark A. Hlatky, MD, M Alan S. Go, MD‡§

- Retrospective cohort study of patients who underwent a PCI between 1996 and 2008 in an integrated healthcare delivery system
- Associations of spontaneous bleeding and MI with all-cause mortality

NRISE lab

Dhruv SK et al; JACC. 2015; 65: 1411-20

The crude annual death rate among patients who had a **spontaneous bleed** and patients who had a **spontaneous MI** was higher than among patients with **neither event**.

Mortality rate of patients with Bleeding was even higher than those who had MI.

TABLE 3 Spontaneous Events and	Unadjusted	l Long-Tern	n Mortality	
	Number of Patients	Number of Deaths	Crude Annual Mortality Rate (per 100 Person-Years)	95% Confidence Interval
Spontaneous bleed during follow-up	530	164	9.4	8.1-10.9
Spontaneous MI during follow-up	991	315	7.6	6.8-8.5
Neither event during follow-up	31,424	3,590	2.6	2.5-2.7
MI = myocardial infarction.				

Dhruv SK et al; JACC. 2015; 65: 1411-20

Incidence, Predictors, and Impact of Post-Discharge Bleeding After Percutaneous Coronary Intervention

Philippe Généreux, MD,*†‡ Gennaro Giustino, MD,§ Bernhard Witzenbichler, MD,|| Giora Weisz, MD,*†¶ Thomas D. Stuckey, MD,# Michael J. Rinaldi, MD,** Franz-Josef Neumann, MD,†† D. Christopher Metzger, MD,‡‡ Timothy D. Henry, MD,§§|||| David A. Cox, MD,¶¶ Peter L. Duffy, MD, MMM,## Ernest Mazzaferri, MD,*** Mayank Yadav, MD,* Dominic P. Francese, MPH,* Tullio Palmerini, MD,††† Ajay J. Kirtane, MD, SM,*† Claire Litherland, MS,* Roxana Mehran, MD,*§ Gregg W. Stone, MD*†

ADAPT-DES study;

To determine the incidence and predictors of clinically relevant bleeding events occurring within 2 years after hospital discharge

The effect of Post Discharge Bleeding on subsequent 2-year allcause mortality was estimated by time-adjusted Cox proportional hazards regression.

Post Discharge Bleeding was the strongest predictor of 2year mortality

Variable*	Adjusted HR (95% CI)	p Value	
PDB†	5.03 (3.29-7.66)	< 0.0001	
With transfusion	4.71 (2.76-8.03)	< 0.0001	
Without transfusion	5.27 (3.32-8.35)	< 0.0001	
Post-discharge MI†	1.92 (1.18-3.12)	0.009	
Current smoker	1.69 (1.25- <mark>2.29</mark>)	0.001	The magnitude of the effect of
Age (per yr increase)	1.04 (1.02-1.05)	< 0.0001	post discharge Bleeding on
Male	1.45 (1.11-1.90)	0.007	subsequent mortality was
Diabetes mellitus	1.48 (1.17-1.88)	0.001	roughly 2 6-fold areater than
Previous MI	1.42 (1.12-1.81)	0.004	the effect of post discharge MI
STEMI or non-STEMI presentation	1.41 (1.10-1.83)	0.008	the effect of post discharge wit.
VerifyNow P2Y ₁₂ reactivity units >208	1.22 (0.96-1.54)	0.10	
IVUS use	0.83 (0.65-1.06)	0.13	
Creatinine clearance (per ml/min increase)‡	0.99 (0.99-1.00)	0.0007	
Baseline white blood cells (per 10 ³ /ml increase)	1.03 (1.01-1.04)	< 0.0001	
Baseline hemoglobin (per g/dl increase)	1.18 (1.09-1.28)	< 0.0001	Généreux P et al; JACC. 2015; 66: 1036-45
(A) Interventional Card	iology 💭 ST	INRIS	Elab CZEHILS

Dual antiplatelet therapy Cessation due to Bleeding Complication is Related to Long-Term Clinical Outcome Following Percutaneous Coronary Intervention

- S.Tanaka, Y.Ikari, M.Nakamura, T.Ijichi, T.Komai, K.Yanagisawa, Y.Kamiyama, T.Iida, S.Tamiya, E.Toda, M.Shima, T.Fujii, D.Ito, G.Nakazawa, N.Masuda, T.Matsukage, N.Ogata, Y.Morino
- Tokai University Hospital, Isehara, Kanagawa, Japan

Presented@JCS2012

Reasons of P2Y12 inhibitor cessation

Kaplan-Meyer Event Free Survival Curve of MACCE

Bleeding and Thrombotic Event

- While thrombotic event is catastrophic, post discharge "bleeding" is also critical (or even worse)
- We need to accurately discriminate the patients who are at risk for thrombotic event or bleeding risk

DAPT Score

RW et al. Yeh RW et al. JAMA. 2016 Apr 26;315(16):1735-49.

Continued Thienopyridine vs. Placebo DAPT Score <2 (Low); N=5731

Continued Thienopyridine vs. Placebo DAPT Score ≥ 2 (High); N=5917

Distribution of DAPT score

Japanese population Toho University

Courtesy of Dr. Raisuke lijima @ Toho Ohashi Hosp

Interventional Cardiol International Course

DAPT study

Limitation of DAPT study

- Consists of patients who had no thrombotic and bleeding event in the first year
- Patients with anti-coagulant Tx were excluded
- Different population?
 - body size, age, and race

Risk Score from PARIS Study

ABLE 5 Integer Risk Score for Coronary Thre	ombotic Events TABLE 4 Integer Risk	TABLE 4 Integer Risk Score for Major Bleeding		
Parameter	Score			
Diabetes mellitus	Age, yrs			
None	0 <50			
Non-insulin-dependent	+1 50-59			
Insulin-dependent	+3 70.70			
te coronary syndrome	70-79			
lo	0 BMI kg/m ²			
es, Tn-negative	+1 <25			
es, Tn-positive	+2 25-34.9			
ent smoking	≥35			
5	+1 Current smoking			
	0 Yes			
<60 ml/min	No			
sent	+2 Anemia			
ent	O Present			
PCI	Absent			
	CrCl <60 ml/min			
	+2 Present			
	0 Absent			
CABG	Triple therapy on dischar	rge		
5	+2 Yes			
0	0 No			

Usman Baber, MD, J Am Coll Cardiol 2016;67:2224–34)

33

Risk Score from PARIS Study

Solid line shows the mean predicted probability of coronary thrombotic and major bleeding events by thrombotic (A) and bleeding (B) integer scores.

Bar graphs display the observed and predicted rates of coronary thrombotic (A) and major bleeding (B) events over 2 years across the respective risk score categories.

Usman Baber, MD, J Am Coll Cardiol 2016;67:2224-34)

Interventional Cardio International Course

Thrombotic and Bleeding Risk

Many patients are high risk for thrombotic AND bleeding event

Usman Baber, MD, J Am Coll Cardiol 2016;67:2224-34)

Japanese postmarketing surveillance of clopidogrel for patients with non-ST-segment-elevation acute coronary syndrome indicated for percutaneous coronary intervention (J-PLACE NSTE-ACS) Cardiovasc Interv Ther. 2013 29: 123-33

Impact of transradial coronary intervention on bleeding complications in OCTOGENARIANS (TOKAI Univ.)

- Among 2530pts receiving PCI, 291 pts (12%) were octogenarian
- Mean Bw : 56kg
- DM 40%
- History of CVD 11%
- Mean Ccr 41
- ACS 40%
- AF 11% (OAC 8%)
- TRI 75% TFI 25%

BARC Major 7.6% TIMI Major bleeding 4.5%, Minor 3.1%

Tammam K, Ikari Y, et al. Cardiovasc Interv and Ther. In Press

Impact of transradial coronary intervention on bleeding complications in OCTOGENARIANS (>80ys) (TOKAI Univ.)

Tammam K, Ikari Y, et al. Cardiovasc Interv and Ther. In Press

38

SUNRISE lab

Interventional Cardiole International Course

Bleeding in Octogenarians

IC Interventional Cardiolo International Course

Tammam K, Ikari Y, et al. Cardiovasc Interv and Ther. In Press

Impact of transradial coronary intervention on bleeding complications in OCTOGENARIANS

Re-visit Bleeding risk

- Once patients suffer from bleeding, they have high mortality risk (even higher than MI)
- Bleeding risk is high in old patients
 - Co-morbidity of AF (Taking OAC)
 - Small body size
 - Low renal function
 - History of bleeding and CVA
 - They have not well studied in the previous clinical trials

