### New Drug Coated Balloon Technologies for Femoral-Popliteal Disease

# Robert M. Bersin, MD, FACC, FSCAI

Medical Director, Endovascular Services

**Swedish Medical Center** 

Seattle, Washington

### **Statement of Financial Interest**

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Robert M. Bersin, MD

Abbott Vascular C, P, SB Ablative Solutions EI Boston Scientific AB, C, EI, P, SB Cook Medical, Inc. C, P Med Alliance SA, AB, EI Medtronic, Inc. C, P Omeros Corp, EI QT Vascular, EI Transverse Medical AB, EI, SO Vatrix Medical EI W.L. Gore C, P AB: Advisory Board C: Consulting Relationship EI: Equity Interest GS: Grant Support P: Proctor or Training Course Sponsorships SB: Speakers Bureau SE: Spouse Employee SO: Stock Options or Positions

# **DCB Technology Development**



- **Prof. Ulrich Speck invents contrast medium iopromide (Ultravist®) in 1979**
- Supported by SCHERING, Prof Ulrich Speck combines contrast media Ultravist<sup>®</sup> with Paclitaxel to develop the DEB prototype PACCOCATH<sup>™</sup>
- Clinical results by Prof Bruno Scheller showed significant restenosis reduction vs. PTCA



Prof Ulich Speck and Prof med Bruno Scheller



BAYER acquires Schering in 2006. One year later assigns PACCOCATH™ to one of its affiliates MEDRAD

# **DCB Technology Development**

### Additive Necessary for Drug Efficacy



- Paclitaxel 2.5 µg/mm<sup>2</sup>
   WITHOUT additive
- Paclitaxel 1.3 µg/mm<sup>2</sup> + Ultravist additive
- Paclitaxel 2.5 µg/mm<sup>2</sup> +
   Ultravist additive



### Drug Coated Balloon – Peripheral Devices

| Company                            | Device            | Drug | Coating / Excipient       | Drug Dose<br>µg/mm² | CE  |
|------------------------------------|-------------------|------|---------------------------|---------------------|-----|
| Aachen Resonance                   | Elutax SV         | PTX  | None                      | 2                   | Yes |
| Balton                             | mcPCB             | PTX  |                           | 3                   | No  |
| Bard                               | Lutonix           | PTX  | Polysorbate / Sorbitol    | 2                   | Yes |
| Bayer-Medrad                       | Cotavance         | PTX  | lopromide                 | 3                   | Yes |
| Biotronik                          | Passeo-18 Lux     | PTX  | Butyryl-tri-hexyl Citrate | 3                   | Yes |
| Boston Scientific                  | Ranger            | PTX  | Citrate Ester             | 2                   | Yes |
| Cardionovum                        | Legflow           | PTX  | Shellac                   | 3                   | Yes |
| Cook                               | Advance 18 PTX    | PTX  | None                      | 3                   | Yes |
| Covidien                           | Stellarex         | PTX  | Amphiphilic Polymer       | 2                   | Yes |
| Eurocor / Biosensors               | Freeway / BioPath | PTX  | Shellac                   | 3                   | Yes |
| iVascular                          | Luminor           | PTX  | Water Reducer Ester       | 3                   | Yes |
| Medtronic                          | IN.PACT           | PTX  | Urea                      | 3.5                 | Yes |
| Meril                              | Mozec             | PTX  | Nano-particles            | 3                   | No  |
| Nano Therapeutics                  | Curex PTA         | PTX  |                           | 2.3                 | No  |
| Vascular Nanotransfer Technologies |                   | PTX  | Nano-encapsulation        |                     | No  |
| Surmodics                          |                   | PTX  | Microcrystalline          | 3                   | No  |
| AngioScore                         | AngioSculpt*      | PTX  |                           | 3                   | No  |
| TriReme Medical                    | Chocolate Touch*  | PTX  |                           |                     | No  |

### **Stellarex DCB**



### Low dose (2 µg/mm<sup>2</sup>) paclitaxel

Hybrid-crystalline formulation



### Effective drug tissue transfer and residency (≥ 28 days)

1. Superimposed PK curves from different datasets: R.Melder, EuroPCR 2012; Yazdani et.al. Catheterization and Cardivascular Interventions 83:132-140 (2014); data on file at Spectranetics



### Limited drug loss

2. Number of particulates ≥10µm/mm of DCB length lost during transit. Data on file at Spectranetics

### **ILLUMENATE EU RCT**

### Primary patency 89% at 12 months



Primary patency defined as freedom from restenosis (determined by duplex ultrasound with PSVR  $\leq 2.5$ ) and freedom from clinically-driven TLR at 12 months. Assessed per lesion. KM estimates reported at day 395 to capture all patients and events within the full (and legitimate) 335-395 follow-up window. Rates from the middle of the protocol visit window (365 days) reported for consistency and comparative purposes with other trials.

### **ILLUMENATE US Pivotal**

### Primary patency 82.3% at 12 months



Primary patency defined as freedom from restenosis determined by duplex ultrasound PSVR ≤2.5 and freedom from clinically-driven TLR at 12 months. Assessed per lesion. KM estimates reported at day 410 to capture all patients and events within the full 320-410 follow-up window. Rates from the middle of the protocol visit window (365 days) reported for consistency and comparative purposes with other trials.

#### S.Lyden TCT 2016

## Ranger<sup>™</sup> DCB

### TransPaxTM Technology



- Paclitaxel 2 µg/mm<sup>2</sup>
- Citrate ester (acetyl tributyl citrate ATBC)
- Balanced hydophyllic/hydrophobic excipient enhances drug retention and transfer



### **RANGER-SFA** Trial

### Prospective 2:1 randomized trial in 105 patients



SFA: 4-8mm; 30-100mm BTK: 2-4 mm; up to 150 mm

Sheinert D CIRSE 2016



### 2 µg/mm<sup>2</sup> paclitaxel DCB PREVEIL FIH trial enrolling in US



### **Focal Balloon Technologies**



# AngioSculpt DCB

### PANTHER Registry (N=121 patients, 124 lesions)

- 37.1% Angiosculpt alone (N-46)
- 32.3% Angiosculpt plus DCB (N=40)
- 30.6% Angiosculpt plus stent (N=38)



**Blessing E LINC 2014** 

## AngioScore DCB

- 60 patient single-arm registry (4 sites)
- 3 µgr/mm2 paclitaxel with Ultravist excipient (switch to PEG?)
- Coronary ISR (endovascular application now being considered)





30-day LLL porcine overstretched BMS model (N=30)

Gershony G TCT 2012

## Chocolate Touch DCB



• Excipient is a GRAS substance used in the pharmaceutical and in the food industry for 65yrs.





TriReme Medica

*GRAS: Generally Recognized as Safe Investigational device. Not approved for human use.* 

# **ENDURE Study Design**

#### Up to 80 patients; Single-Arm Trial

- Single or Tandem *de novo* lesion
- Total lesion length  $\leq$  150 mm
- RVD 2.0 6.0 mm
- Rutherford Grade 3-5



#### **Study Endpoints**

- Late Lumen Loss Angiography (QVA Core Lab)
- Patency Rate Duplex Ultrasound (dUS Core Lab)
- TLR Rate
- Amputation Rate
- Clinical Improvement (Rutherford Grade change)

## **Sirolimus Drug Coated Balloons**

Sirolimus offers potential benefits over Paclitaxel:

| Attribute         | Sirolimus (or Analogs)      | Paclitaxel |
|-------------------|-----------------------------|------------|
| Mode of action    | Cytostatic                  | Cytotoxic  |
| Margin of safety  | 10'000 fold                 | 100 fold   |
| Therapeutic range | Wide                        | Narrow     |
| Anti-restenotic   | Yes – Iower late lumen loss | Yes        |
| Anti-inflammatory | Yes                         | No         |
| Tissue absorption | Slow                        | Fast       |
| Tissue retention  | Short                       | Long       |

 Sirolimus is drug of choice for coronary DES supported by solid clinical based evidence

### Sirolimus Coated Balloons – Challenges

### Enhance tissue absorption

 Difficult to get sirolimus to enter into arterial tissue within 30 to 180 seconds of balloon dilatation; hence some kind of "instant glue" is required to transfer the drug from the balloon to the tissue efficiently

### • **Extend** tissue retention

 Sirolimus must be continuously delivered over time, so some form of "time release mechanism" must be employed to maintain therapeutic levels



# Magic Touch Nanolute Technology





Bernardo Cortese MD TCT 2016



## **Xtreme Touch Neo Endovascular DCB**







#### Concept Medical Product Brochure

# Med Alliance SELUTION<sup>™</sup> Sirolimus DCB

- Micro-reservoirs made out of biodegradable polymer intermixed with Sirolimus:
  - Controlled and sustained drug release mechanism
  - Maintains therapeutic effect in tissue over long period of time



- Novel Cell Adherent Technology CAT™:
  - CAT<sup>™</sup> transfer membrane houses and protects micro-reservoirs during balloon insertion, lesion crossing and expansion
  - CAT<sup>™</sup> transfer membrane with embedded micro-reservoirs releases from balloon delivery system and adheres to vessel lumen with short balloon inflations

### Med Alliance SELUTION<sup>™</sup> vs. Competition





### Med Alliance SELUTION<sup>™</sup> Sirolimus DCB



Med Alliance – In vitro test data on file Bard & Medtronic – Presentation J.F. Granada (TCT 2014)

### Med Alliance SELUTION<sup>™</sup> Sirolimus DCB





#### En Face Scanning Electron Microscope at 24 hours



Med Alliance – PK Study (2014-004) Medtronic – Presentation R.J. Melder (LINC 2012) Bard – *Catheterization and Cardiovascular Interventions* 83:132–140 (2014)

# **SELUTION<sup>™</sup> FIH Fem-Pop Trial**

| Objective              | To show non-inferiority of <b>SELUTION™ DCB</b> in terms of safety and efficacy for treatment of Superficial Femoral (SFA) or Popliteal (PA) Artery lesions                                                                                                                                                                                                                                                                                                                                           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design                 | <ul> <li>Prospective, Multi-Center, Single Blinded, Single Arm Controlled</li> <li>N=50</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
| Primary<br>Endpoint    | <ul> <li>Angiographic Late Lumen Loss (LLL) by QVA</li> <li>6 months</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Secondary<br>Endpoints | <ul> <li>Major Adverse Events (Death, TLR, Thrombosis, Amputation) <ul> <li>6 months</li> </ul> </li> <li>Primary Patency – Freedom from CD-TLR and Restenosis by DUS <ul> <li>6, 12 and 24 months</li> </ul> </li> <li>Angiographic Binary Restenosis (ABR) by QVA <ul> <li>6 months</li> </ul> </li> <li>Composite of Freedom from Amputation and Freedom from CD-TVR <ul> <li>12 and 24 months</li> </ul> </li> <li>Change of ABI, WIQ and QoL <ul> <li>6, 12 and 24 months</li> </ul> </li> </ul> |

### **Endovascular DCB Conclusions**

- 1. Endovascular DCB has been proven to reduce late loss in SFApopliteal lesions with paclitaxel (Thunder, Fem-Pac, LEVANT I, BIOLUX P-I and PACIFIER) and to reduce restenosis/TLR in SFApopliteal lesions with paclitaxel (Thunder, Fem-Pac and PACIFIER).
- 2. All current research with DCB has focused on the use of paclitaxel with a dosing of 2-3  $\mu$ g/mm<sup>2</sup>.
- 3. The use of DCB is particularly attractive in long lesions where DES is problematic and expensive, but lesion preparation will be increasingly important to achieve acceptable acute outcomes with PTA.
- 4. The role of lesion preparation with atherectomy and focal/scoring balloons is currently under investigation, and the preliminary data suggests this may be particulary beneficial in calcified and long lesions.
- 5. Sirolimus DCBs have been proven to be effective in coronary applications and are now being developed for SFA applications.