## What Should We Be Aware of Things? : Learning from Complicated Case

### Seung Hoon Lee RT

Cardiovascular center, Seoul St. Mary's Hospital The Catholic University of Korea

## Growth of TAVI



In the next 10 years, TAVI will grow X4

Over the last decade, TAVR has evolved from an highly complex and hazardous procedure into a mature, safe and streamlined therapy.





## **Rapid Innovations of Device**



Rapid innovations and refinements have been specifically designed to overcome these limitations, that have resulted in several second-generation devices





## New approval of Device

#### **EDWARDS**





#### **MEDTRONIC**



#### **Redesigned Outflow**

 Reduced height, reshaped for improved fit, especially in

EnVeoTM R delivery system 14 Fr sheath

#### **Enhanced sealing**

- Optimized cover index (sizing), consistent radial force
- Extended skirt (1mm)













## **Recently TAVI outcome**

#### Vascular Complications

### Paravalvular Leak

#### 30-day All-cause Mortality







<sup>1</sup>Popma, et al., J Am Coll Cardiol 2014; 63: 1972-81; <sup>2</sup>Holmes, et al., JAMA 2015; 313: 1019-28; <sup>2</sup>Leon, et. al. presented at ACC 2013; <sup>4</sup>Meredith, et al., presented at PCR London Valves 2014; <sup>5</sup>Adams, et al., N Engl J Med 2014; 370: 1790-8; <sup>6</sup>Manoharan, et al., et. al. presented at TCT 2014; <sup>7</sup>Kodali, et al., presented at ACC 2015; <sup>8</sup>cchofer, et al J Am Coll Cardiol 2014; 63: 763-8; <sup>9</sup>Meredith, et al., presented at ACC 2015

- ✓ With impressive reduction of vascular complications, paravalvular leaks, and other undesirable effects
- These improvements have finally led with a clear reduction of peri-procedural mortality, which is currently at around 1% at 30 days

EuroPCR 2015; 9Vahanian, et al., presented at EuroPCR 2015; 10Schofer, et al., J Am Coll Cardiol 2014; 63: 763-8; 11Meredith, et al., presented at PCR London Valves 2014







## PARTNER II & SURTAVI

#### **PARTNER** II



Thourani V., et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: A propensity score analysis. *Lancet.* 2016;387: 2218-25.

The PARTNER II Trial intermediate-risk cohort unadjusted clinical event rates, AT population.

#### **SURTAVI**



**NOTE:** The SURTAVI study utilized a novel Bayesian statistical methodology. A subset of the cohort had complete data at 24 months. The remaining subjects have incomplete data at various intervals in the follow-up. N Engl J Med 2017; 376:1321-1331 <u>April 6, 2017</u>



## Still.... TAVI Complication



<General complications>

- I. Aortic dissection
- 2. Annular rupture
- 3. Peri-aortic hematoma
- 4. Coronary Occlusion
- 5. Vascular complication







✓ View point – Iliac artery rupture & Aortic

✓ <u>View point – Guide wire-induced LV injury</u>

✓ <u>View point – Valve embolization</u>

✓ <u>View point – Coronary Artery Occlusion</u>





# **1**<sup>st</sup> Iliac artery rupture





### 1<sup>st</sup> Iliac artery rupture during TAVR



#### Annulus area 370

### Sapien XT 23mm







## 1<sup>st</sup> Iliac artery rupture during TAVR

#### Balloon (20mm)

#### Valve implantation (23mm)









## 1<sup>st</sup> Iliac artery rupture during TAVR

#### **Initial PTA Balloon**



#### Post Graft (viabahn 8\*10 / 9\*10)







## 1<sup>st</sup> - 2 Iliac artery rupture during TAVR







### Review of 1<sup>st</sup> case – Lessons for Nurse & Tech

- I. Careful & meticulous <u>assessment of access</u> arterial tress using CT
- Consider <u>alternative access</u> sites including subclavian, carotid, conduit (direct aortic), open iliac, transcava
- Iliofemoral angiography after vascular closure from the contralateral femoral artery
- 4. Sudden <u>unexplained hypotension</u> just after TAVR  $\rightarrow$  <u>consider iliac</u> <u>artery rupture first</u>
- 5. <u>Covered stents</u> should be always in the cath lab

 $\rightarrow$  We need to find the replacement viabahan (Gore)





### Review of 1<sup>st</sup> case - Main Sheath

| Company                              | THV            | Delivary | Sheath                                                        | Sheath ID<br>(unexpanded) | Sheath OD<br>(unexpanded) | Minimum Vessel<br>Diameter* |
|--------------------------------------|----------------|----------|---------------------------------------------------------------|---------------------------|---------------------------|-----------------------------|
| Edwards                              | SAPIEN 3 valve | Мах      | E-sheath                                                      | 14F (4.6 mm)              | 18Fr (6.0 mm)             | 5.5 mm                      |
|                                      | 23, 26 mm      | 22Fr     | 14Fr                                                          |                           |                           |                             |
|                                      | SAPIEN 3 valve | Max      | E-sheath                                                      |                           | 20Fr (6.7 mm)             | 6.0 mm                      |
|                                      | 29 mm          | 24Fr     | 16Fr                                                          | 10F (5.3 mm)              |                           |                             |
| Medtronics                           | Evolute R      | Max      | STJ                                                           | 16F (5.3 mm)              | 18Fr (5.9 mm)             | 5.0 mm                      |
| STJ                                  | 23, 26, 29 mm  | 18Fr     |                                                               |                           |                           |                             |
| Boston                               | Lotus          |          |                                                               | 20F (C 7 mm)              | $22E_{\rm r}$ (7.4 mm)    | 6.0 mm                      |
|                                      | 23mm           |          | L13-3                                                         | 20F (0.7 mm)              | 22Fr (7.4 mm)             | 0.0 mm                      |
|                                      | Lotus          |          |                                                               | 21F (7.1 mm)              | 24Fr (7.9 mm)             | 6.5 mm                      |
|                                      | 25, 27mm       |          | LIJ-L                                                         |                           |                           |                             |
| Dynamic Expansion<br>Mechanism (DEM) |                |          |                                                               | 36 cm                     |                           |                             |
|                                      |                |          |                                                               |                           |                           |                             |
| Unexpanded                           |                |          | Fully Expandable<br>(26.5 cm)Partially Expandable<br>(9.5 cm) |                           | ndable                    |                             |

57 cm

Seoul St. Mary's Hospital

expanded Expanded Reduced

### Review of 1<sup>st</sup> case CFA~CIA → Fr available

#### **MPR**

### **Curved MPR**







### Review of 1<sup>st</sup> case - Puncture site



### 2. Puncture site $\rightarrow$ Rt or Lt Upper or Lower







H Centerli

ulative Target Zone

THE CATHOLIC UNIVERSITY OF KOREA
SEOUL ST. MARY'S HOSPITAL

2.











#### 68.8mm (Annulus Diameter : 21.9mm) → CoreValve Evolut R 26mm













#### Emergency OP In Hybrid room









### 2<sup>nd</sup> CASE Review – Lessons for Nurse & Tech

- Check to LV volume & hypertrophy from Work up
- Initial LV gram & Exchange the wire through a pigtail in RAO view
- Always check the position of wire or catheter and heart motion
- Use Navigator system
- Prepare of pericardial centesis for cardiac tamponade
- Transfer position of Emergency OP







### 2<sup>nd</sup> CASE Review – Wire & Catheter

| Usage          | Order                                             | Length | Company       |
|----------------|---------------------------------------------------|--------|---------------|
| Exchange       | 035" Angled Terumo wire                           | 260cm  | Terumo        |
|                | 035" Complete J Terumo wire                       | 150cm  | Terumo        |
|                | 035" Amplatze Extra Stiff wire                    | 260cm  | Cook          |
| AV<br>Crossing | 035" Straight Stiff Terumo wire                   | 260cm  | Terumo        |
|                | 035" Straight Tefron wire                         | 150cm  | Merit medical |
|                | 035" Ring Torque wire                             | 145cm  | СооК          |
| Main           | 035" Amplatze Super Stiff Wire<br>Staight tip 1cm | 260cm  | Boston        |
|                | 035" Amplatze Extra Stiff wire                    | 260cm  | Cook          |
|                | 035" Safari pre shape small curve                 | 300cm  | Boston        |
| Extra stiff    | 035" Lunderquist extra stiff wire                 | 260cm  | Cook          |

| Usage      | Order                                       |  |  |
|------------|---------------------------------------------|--|--|
| Angio      | Pigtail catheter 6Fr<br>(or Marked Pigtail) |  |  |
| Exchage    | JR4 diagnostic catheter 6Fr                 |  |  |
| ۸\/        | AL1 , 2 diagnostic catheter 6Fr             |  |  |
| Crossing   | AL1 , 2 Guiding catheter 6Fr                |  |  |
| Wire shape | Pigtail catheter 6Fr                        |  |  |







Seoul St. Mary's Hospital Cardiovascular Center

# **3rd** Valve embolization





## **3<sup>rd</sup> Ventricular Embolization after 1day**



### Annulus area 495 — Sapien XT 26mm





SEOUL ST. MARY'S HOSPITAL



## 3<sup>rd</sup>-2 Aortic embolization during implantation

### A rare complication with Edwards Sapien: Aortic valve embolization in TAVI

Hüseyin Ayhan<sup>1</sup>, Tahir Durmaz<sup>1</sup>, Telat Keleş<sup>1</sup>, Hacı Ahmet Kasapkara<sup>1</sup>, Kemal Eşref Erdoğan<sup>2</sup> and Engin Bozkurt<sup>1</sup>



Figure 1. (a and b) Fluoroscopic image of implantation of Edwards Sapien XT prosthesis under rapid pacing, both of them are same angle but the valve in (b) is higher than in (a).





## **3<sup>rd</sup>-2** Aortic embolization during implantation



Figure 2. (a) Fluoroscopic image of implantation of the second Edwards Sapien XT prosthesis under rapid pacing, (b) Fluoroscopic image showing the angiogram after deployment of the embolized value in aorta with no evidence of obstruction of truncus brachiocephalicus and left common carotid artery.

- (1) attending your surgeon for any complications
- (2) measuring the valve size accurately
- (3) imaging of optimal valve plane
- (4) controlling ventricular pacing before valve deployment
- (5) preparing the second valve quickly.



### **3<sup>rd</sup> CASE Review -** Consequences of TAV embolization

- ✓ Annular trauma
- ✓ Severe paravalvular leaks
- $\checkmark$  Increased risk of permanent pacemaker implantation
- $\checkmark$  LV outflow obstruction
- ✓ Stroke
- ✓ Aortic obstruction
- $\checkmark$  Coronary occlusion
- ✓ Vascular injury
- ✓ Mitral valve injury
- ✓ Ventricular septal defects

2014 TCT Valvular Migration During TAVR Dr Ganes/h Manoharan





### 3<sup>rd</sup> CASE Review - How / Why does it happen?

- ✓ Learning curve / technique new device
- ✓ Valve size mismatch
- ✓ Sub-optimal wire control
- ✓ Sub-optimal valve release/deployment too fast

#### Sub-optimal valve fixation

- Low degree of annular calcification: Aortic regurgitation
- Degree of valve over-sizing
- I: capture and arterial pressure drop not maintained before inflating
- ✓ Hyperdynamic circulation
- <u>Severe septal hypertrophy/septal bulge</u>

2014 TCT Valvular Migration During TAVR Dr Ganes/h Manoharan





#### 3rd CASE Review - Lessons for Nurse & Tech

- **CT** Review
  - Valve size mismatch
  - Severe septal hypertrophy / septal bulge  $\rightarrow$  Selection of SE of BE
- I: capture and arterial pressure drop not maintained before inflating





OLIC UNIVERSITY OF KOREA ''S HOSPITAL

### 3<sup>rd</sup> CASE Review - Lessons for Nurse & Tech

- ✓ CT Review
  - Valve size mismatch
  - Severe septal hypertrophy / septal bulge  $\rightarrow$  Selection of SE of BE
- $\checkmark$  I:I capture and arterial pressure drop not maintained before inflating



Seoul St. Mary's Hospital



#### (Shallow SOV & Low coronary ostium)





#### Shallow SOV & Low coronary ostium



- LM Height 6.7 mm / RCA Height 10.1 mm
- Annulus area 466.3 mm<sup>2</sup> / Diameter 20.6 \* 28.3 mm
- SOV 28.5 \* 29 mm



THE CATHOLIC UNIVERSITY OF KOREA





















### **Final TAVI - Coronary artery**









#### Post TAVI Aortogram → will fine





Webb et al., Circulation 2006 113: 842-850

#### LM Stenting & NC balloon



THE CATHOLIC UNIVERSITY OF KOREA



### 4<sup>th</sup> CASE Review – Coronary artery occlusion

### **Anatomical Predictors of Coronary occlusion**

#### Multi-center register

| Journal of the American College of Cardiology           | Vol. 62, No. 17, 2013                        |  |
|---------------------------------------------------------|----------------------------------------------|--|
| © 2013 by the American College of Cardiology Foundation | ISSN 0735-1097456.00                         |  |
| Published by Elsevier Inc.                              | http://dx.doi.o.gt/10.1016/j.jac.2013.07.040 |  |
| CLINICAL RESEARCH                                       | Interventional Cardiology                    |  |

#### Predictive Factors, Management, and Clinical Outcomes of Coronary Obstruction Following Transcatheter Aortic Valve Implantation

Insights From a Large Multicenter Registry

Henrique B. Ribeiro, MD,\* John G. Webb, MD,† Raj R. Makkar, MD,‡ Mauricio G. Cohen, MD,§ Samir R. Kapadia, MD,|| Susheel Kodali, MD,¶ Corrado Tamburino, MD,# Marco Barbanti, MD,†# Tarun Chakravarty, MD,‡ Hasan Jilaihawi, MD,‡ Jean-Michel Paradis, MD,¶ Fabio S. de Brito, JR, MD,\*\* Sergio J. Cánovas, MD,†† Asim N. Cheema, MD,¶ Fabio S. de Brito, JR, MD,\*\* Sergio J. Cánovas, MD,†† Asim N. Cheema, MD,¶ Gonzalo Pradas, MD,\*\*\* Marc Ruel, MD,††† Jorge Salgado-Fernández, MD,¶¶ Raúl Moreno, MD,## Gonzalo Pradas, MD,\*\*\* Marc Ruel, MD,††† Jorge Salgado-Fernández, MD,¶¶ Raúl Moreno, MD,## Gonzalo Sarmento-Leite, MD,§§§ Hadi D. Toeg, MD,††† James L. Velianou, MD,|||||| Alan Zajarias, MD,¶¶¶ Vasilis Babaliaros, MD,### Fermando Cura, MD,\*\*\* Antonio E. Dager, MD,†††† Ganesh Manoharan, MD,‡‡‡‡ Stamatios Lerakis, MD,### Augusto D. Pichard, MD,§§§§ Sam Radhakrishnan, MD,||||||| Marco Antonio Perin, MD,\*\* Eric Dumont, MD,\* Eric Larose, MD,\* Sergio G. Pasian, MD,\* Luis Nombela-Franco, MD,\* Marina Urena, MD,\* E. Murat Tuzcu, MD,|| Martin B. Leon, MD,¶ Ignacio J. Amat-Santos, MD,¶¶¶

Quebec City, Quebec, Toronto, Ottawa, Hamilton, Ontario, and Vancouver, British Columbia, Canada; Los Angeles, California; Miami, Florida; Cleveland, Ohio; New York, New York; Catania, Italy; Sao Paulo, and Porto Alegre, Brazil; Valencia, Oviedo, Madrid, Vigo, La Coruna, and Valladolid, Spain; Rotterdam, the Netherlands; Singapore; St. Louis, Missouri; Atlanta, Georgia; Buenos Aires, Argentina; Cali, Colombia; Belfast, Northern Ireland; and Washington, DC

- 44/6688 (0.66%)
- Predominantly LM
- More common in
  - Women
  - <u>Balloon-expandable</u> TAVI
  - Valve-in-Valve



- 10.6±2.1mm vs. 13.4±2.1mm
- <12mm in obstruction 86%
- <12mm controls 26%</li>
- SOV:
  - 28.1±3.8mm vs. 31.9±4.1 mm
  - <30mm in obstruction 71%</li>
  - <30mm controls 33%
- LMH <12mm and SOV <30mm</li>
  - obstruction 68%
  - controls 13%



### 4<sup>th</sup> CASE Review – Coronary artery occlusion

#### Schematic Representation of four aortic root scenarios







### 4<sup>th</sup> CASE Review – Coronary artery occlusion

### **Evaluation pre TAVI**

#### **SOV & Coronary Height & Length of Leaflet**

Figure 2: Multidetector Computed Tomography Reconstruction of the Aortic Root in One Patient Undergoing Evaluation Pre-transcatheter aortic valve implantation (TAVI)



(A) Double-oblique transverse at the level of the sinuses of Valsalva; (B) measurement of (B) left main coronary artery (LMCA); (C) right coronary artery (RCA).





### 4<sup>th</sup> CASE Review – Lessons for Nurse & Tech

- Prediction from work up CT
   (narrow SOV, bulky leaflet calcifications, low-lying coronary ostia)
- During BAV & Simultaneous Aortogram & Echo, bulky calcification noted to move toward left main
- Finally both check from angio (Aortogram and CAG)
- Decision made to maintain access to coronary during THV deployment
- Need to prepare of Guiding catheter, wire, balloon & stent quickly.

Especially, it is necessary to strong backup

guiding & very stiff wire

Figure 3: Simultaneous Aortography and Balloon Aortic Valvuloplasty Showing the Patency of Both Left Coronary Artery (LCA) and Right Coronary Artery (RCA) while the Balloon is Fully Inflated





## Take home message

✓ Size measure is also as important as the quality measure

- Quantitative (Aorta & Access diameter, Annulus area & perimter)
- <u>Qualitative</u> (Aortic valve calcification amount & distribution, LVOT protruding calcification, SOV leaflet calcification Aorta angulation & Access route)

#### ✓ Keep the <u>necessary supplies</u> in the cath lab

- Various wire & catheter, Covered stent, PTA Balloon

#### TAVI team is responsible to the sustainable management





